COMMISSION STAFF WORKING DOCUMENT IMPACT ASSESSMENT REPORT Accompanying the document Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on substances that deplete the ozone layer and repealing Regulation (EC) No 1005/2009

Tilhører sager:

Aktører:


    1_EN_impact_assessment_part1_v3.pdf

    https://www.ft.dk/samling/20221/kommissionsforslag/kom(2022)0151/forslag/1871996/2555597.pdf

    EN EN
    EUROPEAN
    COMMISSION
    Strasbourg, 5.4.2022
    SWD(2022) 99 final
    COMMISSION STAFF WORKING DOCUMENT
    IMPACT ASSESSMENT REPORT
    Accompanying the document
    Proposal for a
    REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
    on substances that deplete the ozone layer and repealing Regulation (EC) No 1005/2009
    {COM(2022) 151 final} - {SEC(2022) 157 final} - {SWD(2022) 98 final} -
    {SWD(2022) 100 final}
    Offentligt
    KOM (2022) 0151 - SWD-dokument
    Europaudvalget 2022
    i
    Table of contents
    1. INTRODUCTION: POLITICAL AND LEGAL CONTEXT............................................................... 7
    1.1. The European Green Deal and the Paris Agreement on Climate
    Change...............................................................................................................7
    1.2. The Montreal Protocol on substances that deplete the ozone layer...................7
    1.3. The EU ODS Regulation (Regulation (EC) No 1005/2009).............................8
    2. PROBLEM DEFINITION .................................................................................................................... 9
    2.1. What is the problem?.........................................................................................9
    2.1.1. Where the residual emissions come from ............................................................ 10
    2.1.2. Efficiency issues..................................................................................................... 15
    2.1.3. Incomplete monitoring and reporting .................................................................. 17
    2.1.4. Coherence and clarifications................................................................................. 18
    3. WHY SHOULD THE EU ACT? ........................................................................................................ 20
    3.1. Legal basis.......................................................................................................20
    3.2. Subsidiarity: Necessity of EU action...............................................................20
    3.3. Subsidiarity: Added value of EU action..........................................................21
    4. OBJECTIVES: WHAT IS TO BE ACHIEVED? ............................................................................... 21
    4.1. General (review) objectives.............................................................................21
    4.2. Specific (review) objectives ............................................................................21
    5. WHAT ARE THE AVAILABLE POLICY OPTIONS? .................................................................... 22
    5.1. What is the baseline from which options are assessed? ..................................22
    5.1.1. Baseline for environmental impacts ..................................................................... 22
    5.1.2. Baseline for economic impacts.............................................................................. 22
    5.1.3. Baseline for other impacts .................................................................................... 24
    5.2. Description of the policy options ....................................................................24
    5.2.1. Review objective A: Achieve a higher level of additional emission reductions .... 26
    5.2.2. Review objective B: Improve the efficiency of the Regulation while preserving the
    significant emission reductions achieved so far.................................................................... 27
    5.2.3. Review objective C: Ensure more comprehensive monitoring ............................. 29
    5.2.4. Review objective D: Improve coherence............................................................... 30
    5.3. Measures discarded at an early stage...............................................................32
    6. WHAT ARE THE IMPACTS OF THE MEASURES IN THE POLICY OPTIONS? ....................... 32
    6.1. Achieve a higher level of additional emission reductions...............................32
    6.2. Improve the efficiency of the Ozone Regulation while preserving the
    significant emission reductions achieved so far ..............................................38
    ii
    6.3. Ensure more comprehensive monitoring.........................................................41
    6.4. Improve coherence and clarity ........................................................................43
    7. HOW DO THE OPTIONS COMPARE?............................................................................................ 43
    8. PREFERRED OPTION ...................................................................................................................... 47
    8.1. REFIT (simplification and improved efficiency) ............................................47
    9. HOW WILL ACTUAL IMPACTS BE MONITORED AND EVALUATED?.................................. 48
    ANNEX 1: PROCEDURAL INFORMATION............................................................................................ 50
    ANNEX 2: SYNOPSIS REPORT OF STAKEHOLDER CONSULTATIONS .......................................... 53
    ANNEX 3: WHO IS AFFECTED AND HOW? .......................................................................................... 58
    ANNEX 4: ANALYTICAL METHODS ..................................................................................................... 62
    ANNEX 5: DETAILED INFORMATION ON HALON BANKS............................................................... 81
    ANNEX 6: DETAILED INFORMATION ON FOAMS RECOVERY....................................................... 84
    ANNEX 7: LIST OF CLARIFICATIONS NEEDED IN REGULATION .................................................. 95
    ANNEX 8: MEASURES AND INTERVENTION LOGIC OF REGULATION (EC) NO
    1005/2009 ........................................................................................................................................... 96
    ANNEX 9: LIST OF DISCARDED OPTIONS ............................................................................................. 1
    ANNEX 10: VISUAL AID SHOWING THE LINKS BETWEEN THE PROBLEMS
    IDENTIFIED, RELEVANT DRIVERS AND INDIVIDUAL MEASURES TO ADDRESS
    THE PROBLEMS................................................................................................................................. 5
    iii
    Glossary
    Term or acronym Meaning or definition
    2-BTP
    2-bromo-3,3,3-trifluoroprop-1-ene (C3H2F3Br); a halon replacement
    in fire-fighting equipment
    Bank(s)
    The amount of ozone-depleting substances (ODS) contained in
    existing equipment (e.g. refrigerators, foams, fire equipment),
    chemical stockpiles and other products, including after their end of
    useful lifeor recovered and stored ready for use
    BAT
    Best Available Technique (as relevant to the Industrial Emissions
    Directive)
    CERTEX
    IT system that allows to exchange data (“certificates”) on relevant
    ODS shipments between the central EU ODS licensing system and
    custom offices in the Member States directly; IT precursor of the
    European Single Window Environment for Customs
    CDW Construction and demolition wastes
    CFCs
    Chlorofluorocarbons. Group of ODS consisting only of chlorine,
    fluorine, and carbon. First generation of ozone-depleting substances
    banned by the Montreal Protocol. CFCs were commonly used as
    refrigerants, solvents, and foam blowing agents
    CF3I Trifluoroiodomethane: an ODS listed in Annex II
    CO2e(equivalent)
    The quantity of a gas in metric tonnes multiplied by its associated
    global warming potential (GWP). This is used to compare the
    emissions from various greenhouse gases based upon their global
    warming potential
    Consumption
    The quantity of ODS produced plus imported, minus the quantity
    exported minus the quantity destroyed. Calculation of consumption
    under the Montreal Protocol excludes non-virgin bulk imports and
    exports, as well as substances intended for feedstock and process
    agent use
    CTC
    Carbon tetrachloride, also called tetrachloromethane (CCl4);
    commonly used as a raw material in many industrial uses, including
    the production of chlorofluorocarbons and as a solvent
    DCM
    Dichloromethane, also called methylene chloride (CH2Cl2); used
    commonly as a solvent
    EEA European Environment Agency
    E-PRTR European Pollutant Release and Transfer Register
    Feedstock
    Any substance that undergoes chemical transformation in a process
    to synthesise other chemicals in which it is entirely converted from its
    original composition
    F-gases Fluorinated greenhouse gases as defined by Regulation (EU) No
    iv
    517/2014
    F-gas Regulation Regulation (EU) No 517/2014
    GWP
    Global warming potential: a metric for determining the relative
    contribution of a substance to climate warming. The GWP indicates
    how much (solar) energy the emissions of 1 ton of a gas will absorb
    (and thus contribute to climate warming) over a given period of time,
    e.g. 100 years for GWP100, relative to the emissions of 1 ton of carbon
    dioxide (CO2).
    Halons
    Group of ODS containing bromine and fluorine and one or two
    carbons. Their production is banned, but existing (non-virgin) halons
    may still be placed on the EU market for “critical uses”, e.g. for fire-
    fighting on aircrafts and in other specialised applications
    HCFCs
    Hydrochlorofluorocarbons: group of ODS consisting of hydrogen,
    chlorine, fluorine and carbon. Second generation of ozone-depleting
    substances. They were used to replace chlorofluorocarbons due to
    their lower ozone-depleting potential (ODP, see definition later)
    HCFC-22
    Chlorodifluoromethane (CHClF2). The most common HCFC. used in
    refrigeration in the past, and still used as a feedstock chemical today
    HFCs
    Hydrofluorocarbons (, F-gases rather than ODS), consisting of
    hydrogen, fluorine and carbon. They have been used as replacements
    for ODS because they do not deplete the ozone layer. However, they
    are powerful greenhouse gases
    HFC-23 Trifluoromethane
    HTOC
    Montreal Protocol’s Halons Technical Options Committee (sub-group
    of the Technology and Economic Assessment Panel (TEAP) of the
    Montreal Protocol)
    ICAO International Civil Aviation Organization
    IED Industrial Emissions Directive
    ISG
    European Commission Inter Service Group accompanying the
    impact assessment
    Laboratory and analytical uses
    Use of an ODS as a necessary component or part of a laboratory or
    analytical process. Decision IX/17 of the Montreal Protocol
    introduced an exemption for laboratory and analytical uses of ODS
    (Montreal) Protocol
    The Montreal Protocol on Substances that Deplete the Ozone Layer:
    an international treaty governing the protection of stratospheric
    ozone
    New ODS
    Substances listed in Annex II to Regulation (EC) No 1005/2009,
    whether alone or in a mixture, and whether they are virgin,
    recovered, recycled or reclaimed. These substances are not
    controlled under the Montreal Protocol
    v
    Non-Article 5 countries
    “Developed” countries, i.e. Parties to the Montreal Protocol not
    operating under its Article 5 (the latter defines the “developing
    countries”)
    ODP
    Ozone-depleting potential: the amount of ozone depletion caused
    by a substance. More specifically, it is the ratio of global loss of
    ozone due to a given substance and global loss of ozone due to
    trichlorofluoromethane (CFC-11) of the same mass. CFC-11 is
    assigned an ODP value of 1. The ODP values of the different ODS
    range from close to 0 to 10. The higher the ODP value, the more the
    substance depletes the ozone layer
    tODP
    Metric tonnes of a substance multiplied by its ozone-depleting
    potential, resulting in ODP-weighted tonnes. As an example, 1
    metric tonne of HCFC-22 equals 0.055 tODP, while 1 metric tonne of
    halon-1301 equals 10 tODP-t. This is because halon-1301 depletes
    the ozone layer considerably more than HCFC-22
    ODS
    Ozone-depleting substances, i.e. substances that lead to a
    deterioration of the stratospheric ozone layer by photochemical
    reactions releasing reactive halogens (bromine, chlorine atoms) that
    lead to the breakup of ozone molecules
    Ozone hole
    A large area of the stratospheric ozone layer with very low amounts
    of ozone
    Ozone layer
    Region of the upper atmosphere containing relatively high
    concentrations of ozone molecules. It protects humans and other
    living things from harmful UV radiation from the sun
    Ozone layer depletion
    Chemical destruction of ozone molecules in the ozone layer leading
    to low concentrations of ozone and more UV radiation reaching the
    Earth’s surface
    Placing on the market
    Supplying or making available to third persons within the European
    Union for the first time, for payment or free of charge
    Process agents
    Substances used in chemical reactions in industrial processes but,
    contrary to feedstock, do not undergo chemical transformations
    themselves during the process. The applications where ODS are
    allowed to be used as process agents are listed in Annex III to
    Regulation (EC) No 1005/2009
    Reclamation
    Reprocessing of a recovered ODS in order to meet the equivalent
    performance of a virgin substance, taking into account its intended
    use
    Recovery
    Collection and storage of ODS from products and equipment or
    containers during maintenance or servicing or before disposal
    vi
    Recycling Reuse of a recovered ODS following a basic cleaning process
    REIO
    Regional Economic Integration Organization. The EU is considered a
    REIO pursuant to Article 1(6) of the Vienna Convention for the
    Protection of the Ozone Layer
    RSB Regulatory Scrutiny Board
    PCE
    Perchloroethylene (also called Tetrachloroethylene or –ethene,
    C2Cl4); used commonly e.g. in dry cleaning
    SAP Scientific Assessment Panel (of the Montreal Protocol)
    Single Window
    European Single Environment for Customs;
    https://ec.europa.eu/taxation_customs/general-information-
    customs/electronic-customs/eu-single-window-environment-for-
    customs_en
    TARIC TARIC = Integrated tariff of the EU
    TFE
    Tetrafluoroethylene (or –ethene, C2F4); used commonly in the
    production of fluoro-polymers
    UV radiation
    Ultraviolet radiation: Portion of the electromagnetic spectrum with
    wavelengths shorter than visible light. When the ozone layer
    becomes thin, more UV radiation from the sun reaches Earth’s
    surface and may have hazardous effects on the biospere including
    humans
    UNEP United Nations Environment Programme, now UN Environment
    Use of ODS
    The utilisation of ODS in the production, maintenance or servicing
    (including refilling), of products and equipment or in other
    processes
    Virgin ODS Newly produced ODS that have not previously been used
    VSLS Very Short-Lived Substance
    WFD Waste Framework Directive
    1
    1. 1. INTRODUCTION: POLITICAL AND LEGAL CONTEXT
    1.1. 1.1. The European Green Deal and the Paris Agreement on Climate Change
    The European Green Deal1 aims at preventing climate change and protecting, conserving and
    enhancing the EU's natural capital as well as protecting the health and well-being of citizens
    from environment-related risks. Emissions from ozone-depleting substances (ODS) are
    resulting both in the formation of a ‘hole’ in the ozone layer, as well as in contributing to
    climate warming. Consequently, preventing such emissions is key to preventing adverse
    health effects from a damaged ozone layer and for reaching the objective of the Paris
    Agreement on Climate Change. This report is an impact assessment of options that aim at
    improving the EU’s policy to reduce such emissions.
    ODS are man-made chemicals that frequently reach the upper atmosphere after emission. The
    so-called “hole” in the ozone layer was discovered in the 1980s. It is now on the way to
    recovery2 which is preventing any further significant adverse impacts on our health and the
    biosphere, as well as having widespread economic implications. Most ODS are also very
    strong greenhouse gases. Global action to eliminate ODS has already achieved significant
    climate-related benefits, e.g. the positive climate impacts from saved ODS emissions for the
    period 1988 to 2010 were 5-6 times higher than those achieved during the Kyoto Protocol’s
    first commitment period.3
    The climate relevance of ODS emissions is not included in the EU’s climate target to reach at
    least 55% emission reductions by 2030. Thus, any action to reduce ODS emissions further
    would result in additional savings4 for the climate and contribute to reaching climate
    neutrality by 2050.
    1.2. 1.2. The Montreal Protocol on substances that deplete the ozone layer
    In 1987, the international community adopted the Montreal Protocol on Substances that
    Deplete the Ozone Layer5 (hereafter: the Protocol), which phases out the production and
    consumption6 of substances that contribute to ozone depletion in the stratosphere. The
    Protocol covers nearly 100 substances, e.g. groups7 of chlorofluorocarbons (CFCs),
    hydrochlorofluorocarbons (HCFCs) and halons. Each ODS has a specific ozone-depleting
    1 https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
    2
    Expected for the second half of the century
    3
    UNEP (2011). A critical link in protecting the climate and the ozone layer.
    https://www.unep.org/resources/report/hfcs-critical-link-protecting-climate-and-ozone-layer
    4
    Current annual EU ODS emissions are about as large as Sweden’s emissions
    5
    Text of the original Montreal Protocol, see
    https://treaties.un.org/doc/publication/unts/volume%201522/volume-1522-i-26369-english.pdf.
    6
    Consumption is calculated based on import, export, production and destruction.
    7
    For instance within the group of CFCs there are 15 types of CFCs, e.g. CFC11 and CFC217
    2
    potential (ODP) value assigned to it. Conversely, the climate impact of each ODS, i.e. its
    global warming potential (GWP)8, is not mentioned in the Protocol.
    The Protocol and subsequent decisions of its 197 Parties have created a global legal
    framework for controlling ODS. The EU and its Member States are legally bound to phase-
    out schedules of production and consumption for the different groups of ODS. All phase-out
    dates are now in the past. The latest was reached in 2020 for the group of HCFCs, leaving
    only a few exempted uses of ODS in developed countries still remaining (see below). Other
    compulsory obligations under the Protocol include the need to have a licensing system and
    yearly reporting on ODS trade and use. The EU has taken a leading role both through its
    positive contribution to the international negotiations and legal framework, but also by
    setting policies at EU level that often go beyond the requirements of the Protocol, e.g.
    the EU completed the HCFC consumption phase-out already in 2010.
    1.3. 1.3. The EU ODS Regulation (Regulation (EC) No 1005/2009)
    Regulation (EC) No 1005/20099
    (hereafter: the Regulation) is the main EU instrument to
    ensure that the EU fulfils its obligations under the Protocol. It also has the self-standing
    objective to achieve a high level of ambition for protecting the ozone layer and
    contributing to climate change mitigation in the EU. The scope of the Ozone Regulation
    covers, in Annex I, the ODS that are identical to the scope of the Protocol, as well as the
    products and equipment using them. In addition, it covers, in Annex II, new substances (“new
    ODS”) that are not (yet) controlled by the Protocol. Except for halon-1202, the new ODS are
    currently only monitored in order to recognise any emerging issues.
    To achieve its objectives, the Regulation generally prohibits the production, trade and
    use of ODS (Annex I) while exempting only a few specified uses where alternatives were
    not available at the time of its adoption (2009). Consequently, all traditional uses of ODS,
    e.g. in cooling, aerosols (i.e. in spray cans) and foams are no longer allowed. The remaining
    exempted uses today are:
     Use as feedstock chemical10 in the chemical production to produce a number of high-
    value, indispensable goods including polymers, plastics, pesticides and
    pharmaceuticals,
     Use of three ODS as process agents11 in five old chemical plants for specific
    chemical production processes,
    8
    The ODP of a substance refers to its relative amount of ozone depletion caused by it compared to the impact
    of a similar mass of CFC-11 (ODP = 1), e.g Halon 1301 has on ODP of 10, so for the same amount based on
    weight Halon-1301 it 10 times worse than for CFC-11. The GWP of a substance refers to its relative
    contribution to climate warming compared to the impact of a similar mass of carbon dioxide (CO2), .e.g. CFC11
    has a GWP of 4660, so its “climate forcing” is almost 5000 times worse than the same mass of CO2 (GWP used
    here is based on the impact over 100 years).
    9
    https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009R1005
    10
    In feedstock use, the chemical undergoes chemical transformation in a process to synthesise other
    chemicals during which it is entirely converted from its original composition
    11
    In process agent use, the ODS is facilitating or inhibiting a chemical reaction in an industrial process, and
    contrary to feedstock use, the ODS remains intact (is not being chemically transformed)
    3
     Use by laboratories and for analytical purposes, and
     Critical uses of halons related to fire protection of specific parts of aircraft and
    military equipment.
    In addition to the above, there exists the possibility of the emergency use of methyl bromide12
    as an effective killing agent for some agricultural pests.13 Destruction and reclamation of
    ODS is also still allowed. In addition, to prevent illegal activities and to comply with
    licencing and reporting obligations under the Protocol, the Regulation foresees strict
    measures to control and monitor the remaining uses of ODS. An overview over the individual
    measures and the logical framework is given in Annex 8.
    The Commission decided to submit the Regulation to a REFIT evaluation in 2017 to check if
    it was fit for purpose. On the basis of the evaluation14 completed in 2019 (hereafter “the
    evaluation”), it was decided to proceed with a revision of the Regulation in the Commission
    Work Programme for 2021.
    The Regulation has close links to other EU legislation, notably Regulation (EU) 517/2014 on
    fluorinated greenhouse gases, as these gases have replaced ODS in many of their original uses
    and the two Regulations apply similar measures to reduce the substances controlled and their
    emissions. Both Regulation are being reviewed in parallel. There are also close links to, inter
    alia, waste15
    and chemical16
    policies, and customs and market surveillance legislation.
    2. 2. PROBLEM DEFINITION
    2.1. 2.1. What is the problem?
    The evaluation found that the Regulation ensures compliance with the Protocol and exerts a
    positive influence on third countries to do likewise. It has safeguarded a high environmental
    ambition by eliminating the majority of past ODS uses, while also ensuring a level playing
    field for concerned industries and undertakings among Member States. Thus, most of the
    12
    On a permit from the European Commission only, based on a request from a competent authority of a
    Member State.
    13
    This possibility has not been used in the EU since 2010.
    14
    EVALUATION of Regulation (EC) No 1005/2009 of the European Parliament and of the Council of 16
    September 2009 on substances that deplete the ozone layer {SWD(2019) 407 final}
    https://ec.europa.eu/clima/sites/default/files/ozone/docs/swd_2019_406_en.pdf
    15
    E.g. Regulation (EC) No 1013/2006 on transboundary waste shipments, the Waste Electrical and Electronic
    Equipment Directive 2012/19/EU and the Waste Framework Directive (Directive 2008/98/EC).
    16
    E.g. REACH (Regulation (EC) Nr 1907/2006), the Industrial Emissions Directive (Directive 2010/75/EU) and
    the European Pollutant Release and Transfer Register (ePRTR) Regulation (EC) No 166/2006.
    An effective ODS policy that is preventing ODS emissions to the extent feasible
    remains crucial for the Green Deal, notably for achieving full recovery of the
    ozone layer and contributing to climate neutrality and staying below the 2 or 1.5
    degrees Celsius target of the Paris Agreement on Climate Change. ODS emission
    savings will be additional to the min. 55% reductions from other sectors by 2030.
    4
    obligations and measures of the current Regulation are fit for purpose and should
    therefore remain in place (see intervention logic in Annex 8).
    However, the design of the Regulation could be slightly improved:
    i. Some measures are not sufficiently efficient;
    ii. There are minor gaps in monitoring; and
    iii. There is a need for clarity and coherence with other rules.
    As most uses are now prohibited, effective control needs to be maintained in the long run.
    Furthermore, in light of the Green Deal and the goal of reaching climate neutrality by 2050,
    any remaining emissions of ODS should be scrutinised to determine if further emission
    reductions would be technically feasible at proportionate costs. The drivers for these issues
    and developments are described below.
    2.1.1. 2.1.1. Where the residual emissions come from
    The main emissions (over 98% both ozone and climate effect17) are a result of ODS banks18,
    in particular from insulation foams19. Additionally, some emissions result from production
    and the exempted uses of ODS (listed in Annex I); production and the use of new ODS (listed
    in Annex II); and ODS not listed in the Ozone Regulation, see Table 1.
    Table 1. 2019 emissions of ODS from different sources and recent trends of emissions factors
    ODS source 2019 Emissions
    Raw materials
    Production of ODS (Annex I) 10* ODPt & 0.06 Mt CO2e
    Production of Annex II
    substances
    Not reported, estimated as 4 tODP based on emission
    factors established for Annex I substances as above
    (Exempted)
    Use of ODS
    Feedstock – Annex I 35 ODPt & 0.20 Mt CO2e
    Feedstock – Annex II 18 ODPt & 0.010 Mt CO2e
    Process agents – Annex I 4 ODPt & 0.014 Mt CO2e
    Laboratory use – Annex I < 1 ODPt & ca 0 Mt CO2e***
    17 Any amount of emissions in terms of mass has both a value in tODP and in tCO2e. It is calculated by taking
    the weight of emissions in tons from each substance and multiplying it by its ODP and its GWP. Then the
    respective results in tODP and tCO2e from all substances are added up. To make the calculation, the respective
    amounts of the individual substances must be known.
    18
    ODS banks: The amount of ODS contained in existing equipment and products (e.g. refrigerators or
    insulation foams), including after their end of useful life, and chemical stockpiles; or recovered and stored
    ready for use
    19
    Old cooling equipment with ODS (e.g. refrigerators) are not in use anymore, but those already present in
    landfills and where the ODS was not removed and destroyed, contribute to these emissions.
    This review seeks to step up ambition without questioning the overall concept,
    approach and measures of the Regulation, as it was generally deemed to be fit for
    purpose. It also explores how the design of the Regulation can be fine-tuned to
    improve efficiency of existing measures and maintain effective control. Many
    suggested changes will result in minor improvements without other impacts.
    5
    Halon for critical use 23.7 ODPt & 0.015 Mt CO2e
    Total Annex I Total exempted uses &
    production
    74 ODPt & ca 0.3 Mt CO2e
    Total Annex II
    Feedstock use
    & production
    22 ODPt & ca 0.01 Mt CO2e
    Banks Insulation Foams Ca. 6000** ODPt & ca. 37 Mt CO2e
    * Extrapolated value based on available data for 10% of the total production
    ** Value based on data from SKM Enviros (2012)20
    *** Composition not known but climate effects will be < 0.01 MtCO2e
    2.1.1.1.2.1.1.1. Continuing emissions from ODS foam banks
    (i) Status quo of the issue
    The main source of current and future emissions are from certain building materials
    containing foams blown with ODS21. ODS emissions occur when buildings using such
    foams are renovated or demolished and the foams are crushed or shredded (releasing the ODS
    gas from the foam). In addition, significant emissions occur if relatively intact foams from
    construction and demolition waste (CDW) are landfilled without treatment, as the remaining
    ODS gases will slowly leak out over time. Annual emissions from all foam banks are
    estimated to be ca. 6000 tODP or 37 Mt CO2e today.
    (ii) Drivers
    The Regulation only requires recovery when it is technically and economically feasible.
    This is open to interpretation and results in little recovery activity in most Member States22,
    given the weak legislative requirement to recover only if technically and economically
    feasible. This requirement places the burden of proof on authorities and would require rather
    strong enforcement efforts to ensure that the right judgement call is made each time ODS
    foams are being crushed or shredded. In practice, the technical and economic feasibility to
    recover ODS depends on the type of foam (e.g. panels, boards, spray or block; see Annex 6),
    and where it is installed.
    Large quantities of ODS foams will enter the waste stream each year until 2050, with peak
    amounts reached only after 2030 (see Fig. A6.1 in Annex 6). As it is often more costly to
    separate, transport and destroy the ODS contained in the foam, standard disposal via
    landfilling without ODS recovery is common practise. Rising prices of raw materials and
    20
    SKM Enviros (2012) “Further Assessment of Policy Options for the Management and Destruction of Banks of
    ODS and F-Gases in the EU”. In their study for the Commission, SKM developed a revised banks model using
    bottom-up data from the insulation sector. As one of the main findings, the SKM study highlighted the
    dominant role of CFCs in old building insulation products. The data was confirmed by the stakeholder
    consultations carried out for the Evaluation. Given that no more ODS were used in new foams after 2003 in the
    EU-28, the banks estimations from the 2012 are considered still accurate.
    21
    ODS were used in the manufacturing of foams in the past: ODS were injected into a liquid, creating bubbles
    that provide the insulating capabilities. The hardened foam consist of a matrix and enclosed ODS gas bubbles.
    22
    SKM Enviros (2012) “Further Assessment of Policy Options for the Management and Destruction of Banks of
    ODS and F-Gases in the EU”.
    6
    costs of landfilling are expected to encourage some more recycling and recovery of foams in
    the future.
    (iii) How the problem will evolve
    Very significant amounts of emissions, in particular in climate terms, are expected to
    continue from the lack of recovery of ODS from foams during the refurbishment and
    demolition of buildings. Annual emissions will increase to ca. 6700 tODP or 43 million
    tCO2e (between 2030-35), about half of the total amounts entering the waste stream each
    year. After 2035 this trend will reverse, but the potential emissions still remain at ca. 4000
    tones tODP or 23 million tCO2e even in 2050 (Fig. 1). This is due to the growing
    contribution of long-term leakage from landfilled ODS foams, even though the amount of
    ODS foams entering the waste stream will already have been significantly reduced by 2050.
    The main sources of ODS emissions from insulation foams are metal-faced panels and
    laminated boards, with smaller contributions from block foam and spray foam (see Fig. A6.1
    in Annex 6).
    Figure 1. Expected EU annual emissions from foam banks
    2.1.1.2.2.1.1.2. Continuing emissions from production and (exempted) uses of
    ODS (Annex I), new ODS (Annex II) and ODS not listed
    (i) Status quo of the issue
    The magnitude of these emission is much smaller than that of foam banks:
     Total annual emissions from the exempted uses of Annex I ODS, including their
    production, are estimated to be ca. 74 tODP or 0.3 Mt CO2e (2019 data). Emission rates
    (emissions divided by the quantities used), where available23, have generally declined in
    23
    There are some indications, e.g. from data reported under the E-PRTR, that these emission rates might be
    higher than stated here.
    0
    5.000
    10.000
    15.000
    20.000
    25.000
    30.000
    35.000
    40.000
    45.000
    0
    1.000
    2.000
    3.000
    4.000
    5.000
    6.000
    7.000
    8.000
    2020 2030 2040 2050
    Global
    Warming
    Potential
    (kTCO
    2
    e)
    Ozone
    depleting
    potential
    (tonnes
    CFC
    equivalent)
    ODPt kTCO2e
    7
    recent years (2010 to 2019, see Table A4.2 in Annex 4). However, the quantities used as
    feedstock in chemical production continue to be significant (ca. 39,000 tODP used in
    2019, other exempted uses are 1-2 magnitudes lower; see Table A4.1 in Annex 4). While
    these few exempted uses persist for the sole reason that suitable alternatives are difficult to
    find, there appear to be alternatives to the use of ODS in two feedstock processes24 and for
    the use of halons in some military equipment25
    .
     Total annual emissions from production or feedstock use of ODS listed in Annex II is
    estimated at 22 tODP or 0.01 Mt CO2e (2019 data). Feedstock uses in chemical
    production processes are significant (20,500 tODP). However, emission rates are
    estimated (in the absence of comprehensive reporting data) to be as low as those of Annex
    I feedstock use. For other uses of Annex II ODS (only about 1% of total quantities used)
    or for ODS not listed, emissions and use data is not known in detail. ODS not currently
    listed26
    have lower ODPs and GWPs, but recent research results indicate that some of them
    may be relevant for ozone depletion nonetheless.
    (ii) Drivers
     Annex I exempted uses: In practice the Regulation does not require further
    reductions of the quantities used for the exempted uses27, although there are some
    measures in the Regulation targeting these uses (quota system for import and production;
    total limits and limits per installation on process agent use in 5 remaining chemical
    plants28
    and an upper limit for laboratory uses). These limits are not very restrictive and
    often far exceed the actual needs. Tightening limits without possibly restricting vital
    economic activities is not straightforward, as for most exempted uses, suitable alternatives
    are not available (yet). Still, the Regulation does require undertakings to take all
    precautionary measures practicable to prevent emissions during use. Furthermore, it is
    possible to regulate ODS emissions, e.g. from chemical production and feedstock use,
    under the Industrial Emissions Directive (Directive 2010/75/EU, IED). To do so would
    require identifying them as a key environmental parameter in Best Available Techniques
    (BAT) relevant for installations in order to obtain operation permits. This has rarely been
    the case so far, however.
     For the use of halons to service a few remaining types of critical appliances, the
    Regulation stipulates a phase-out schedule up to 2040. These uses depend on existing
    stocks of halons and halons reclaimed from old equipment, as production of new halons
    24
    There processes are the use of (i) HCFC-22 to produce tetrafluoroethylene (TFE) and (ii) carbontetrachloride
    (CTC) to produce perchloroethylene (PCE).
    25
    These uses are for fixed fire protection systems of (i) engine compartments on military ground vehicles, and
    (ii) normally unoccupied engine spaces on military surface ships. Alternatives are also available for the inerting
    of fuel tanks on aircraft and in lavatory waste receptacles, but remaining quantities used are very low for the
    latter two uses.
    26
    Besides other ODSs where the uses, sectors or emission sources are completely different (such as N2O) and
    therefore not considered to be regulated by the Regulation.
    27
    Except use of halons in critical equipment (see further below)
    28
    Commission Decision 2010/372/EU, updated by Commission Decision 2014/8/EU
    8
    for these uses is prohibited globally under the Protocol29. Recent assessments carried out
    by the Protocol’s Halons Technical Options Committee (HTOC) indicated that non-virgin
    halon stocks for critical uses might not be sufficient to meet the needs from 2030 onwards
    at global level. If future demand for halons cannot be met (including at the global level),
    new production of halons could become necessary which would result in additional
    emissions.
     The use of Annex II ODS is not restricted by the Regulation30. Their future use will
    depend, to a large degree, on growth in the sectors using them as feedstock and therefore
    on the general economic situation. There are also some emissive uses (e.g. as solvents) and
    a potential use of trifluoroiodomethane (CF3I) in blends used for refrigeration and air
    conditioning appliances.
    (iii) How the problem will evolve
    Emissions from the use of ODS in chemical production (production, feedstock, process
    agents) of both Annex I & II ODS are expected to continue but may slowly decline over the
    next decades (see Fig. 2). Emissions from EU production of ODS are also expected to be
    sustained with a slow decline in the long run (see Table 4.4 in Annex 4). In addition, very
    small emissions (< 1 tODP) from laboratory and analytical use are assumed to be constant
    over time, as confirmed by stakeholders.
    Figure 2. Baseline emissions of ODS-using chemical production processes in tODP (controlled substances =
    Annex I)
    Halon emissions in tODP are estimated to decline by 40% until 204031 and to fall to zero
    thereafter, as all equipment must be halon free by then according to the Regulation. However,
    this does not take into account that additional emissions of halons with very high ODPs and
    GWPs may occur if new production of halons becomes necessary. An important rationale for
    29
    And therefore also by the Regulation
    30
    Except for Halon 1202 listen in Annex II(A) to which similar restrictions apply as for Annex I ODS
    31
    It is possible that emissions reduce more quickly if equipment is replaced ahead of phase-out dates.
    9
    the strict EU phase-out schedule for all halon-using equipment has been to drive the
    development of alternatives, and avoid that production would risk to be permitted again at
    global level.
    2.1.2. 2.1.2. Efficiency issues
    The evaluation concluded that the Regulation has been efficient overall, but for some
    measures the costs incurred have been more significant than originally foreseen, and some
    costs for companies persist even though they may no longer be necessary for effective control
    now the traditional uses have been phased out and the focus is mostly on strictly controlling
    the exempted uses. In particular, the evaluation showed that the following could be improved:
     The licensing system for imports and exports, and more efficient control of illegal
    trade,
     The registration system for laboratories,
     The quota systems for import and production of exempted uses,
     One prohibition date for halon use aboard aircraft that is infeasible and leading to
    costs.
    (i) Status quo of the issue
     The current licensing system creates a high burden for EU-level administration and
    unnecessary costs for industry. Providing effective control of trade with third countries
    at reasonable effort is extremely important to prevent illegal activities. To this end,
    licensing of imports and exports is required by the Montreal Protocol and an EU-wide
    ODS licensing system is in operation. However, there are costs linked to the manual
    granting of licenses at shipment level and the need for economic operators to apply for
    licenses for each shipment in addition to declaring at customs. At the same time, the
    European Commission has set up an IT system (CERTEX) that allows the exchange of
    data (“certificates”) on relevant ODS shipments between the central EU ODS licensing
    system and custom offices in the Member States directly. The Commission proposal for a
    Regulation establishing the EU Single Window Environment for Customs32, currently
    being negotiated with legislators, makes the use of this system obligatory in all Member
    States. Due to the linking of the two IT systems, the information in the customs
    declaration information will be automatically transferred for each shipment to the ODS
    licensing system to be checked and stored, and customs offices will be advised on how to
    proceed with the shipment.
     Stakeholders, in particular in the chemical industry, have recently expressed great
    concerns about the growing importance of illegal trade33. It seems that rogue traders
    are using e.g. special customs procedures (temporary storage, transit etc.) to illegally place
    ODS on the market. The current ODS rules, notably the licensing system in combination
    32
    https://ec.europa.eu/taxation_customs/general-information-customs/electronic-customs/eu-single-
    window-environment-for-customs_en
    33
    While most illegal activities concern the related sector of F-gases, there are also some activities reported
    that concern ODS
    10
    with the legal base for customs controls, does not appear adequate in preventing such
    activities.
     The registration system for laboratories using very small quantities of ODS leads to
    excessive costs compared to the benefits. Registration of all laboratories using ODS is
    intended to prevent that ODS imported or produced for exempted laboratory and analytical
    uses are not used for processes where ODS is not needed or allowed. However, most users
    consume ODS only in miniscule amounts, e.g. for testing (often below 0.1 kg per year), so
    the environmental damage avoided is minimal. Many are SMEs that face entry costs in
    understanding the legislation, becoming acquainted with the registration system and
    providing the right information. Moreover, laboratories may be unaware about the need to
    register. This puts into question the cost-efficiency and effectiveness of the requirement.
    That being said, the collected information from the registration system has, in the past,
    been useful in facilitating the work of the technical bodies of the Protocol to better
    understand these uses.
     Costs of the annual quota systems for import and production of exempted uses are
    disproportionate compared to the benefits. Based on the results of the evaluation,
    import and production quotas did not result in any noticeable environmental effects,
    although they proved to be effective at reducing the use of the relevant substance groups in
    the past when the EU was still reducing the general consumption and production of ODS
    (Annex I) under the Protocol’s schedules. As this has now been achieved, the remaining
    exempted uses are allowed only to the extent that they are actually needed. A quota system
    therefore appears to be redundant.
     One halon prohibition date cannot be met and may therefore create administrative
    costs for airline companies and authorities linked to the need for individual
    derogation requests. The aircraft industry is finding it challenging to find suitable
    alternatives for the protection of unoccupied cargo compartments on airplanes.
    (ii) Drivers
     The Regulation requires the presentation to customs of an import license for each
    imported and exported shipment. Given the linking of customs offices to the EU central
    database, and once this system becomes mandatory in all Member States, the additional
    step of a prior application process on a shipment basis will no longer be necessary, as
    every shipment can be checked automatically as regards the information contained in the
    central database and determine its legality on that basis. Maintaining the requirement
    would therefore be creating costs with no corresponding benefit. Instead, a one-time
    registration (with periodic renewal) of the trader stating the specific conditions under
    which the trader may import or export, would be fully sufficient (a “trader licence”) and
    will be checked and monitored through the CERTEX/Single Window system.
     The flexibility offered to traders by some customs procedures might limit a good EU-
    wide enforcement including border controls.
     The Regulation requires a large number of affected (small) entities using very small
    amounts of ODS to keep their registration in the central database updated for
    laboratory and analytical uses.
    11
     The Regulation requires the Commission to allocate quotas and companies to hold
    quotas for importing and producing ODS, which result in costs for authorities and
    companies.
     The Regulation requires that halons may not be used in the fire protection of
    normally unoccupied cargo compartments in newly type certified airplanes.
    (iii) How the problem will evolve
     The costs savings potential by carrying out automatic shipment-level controls through
    CERTEX/Single Window will not be realised, as manual controls and pre-applications for
    licenses would have to continue, even though a better34
    control is already achieved
    through the automatic checking of all relevant import and export shipment data with data
    contained in the central database. Based on the findings of the evaluation, costs for
    businesses (total €114,000 p.a.) and the Commission (132 person days p.a. plus cross-
    cutting IT costs35) will continue at today’s levels with only slight decreases until 2050.
    Illegal imports linked to special customs procedures will be difficult to avoid and represent
    potential emissions.
     Laboratories and other entities carrying out analysis will continue to bear costs (total
    €50,000 p.a. based on the evaluation) long-term for keeping their registrations updated, at
    little environmental benefit. The Commission will continue to have costs for using and
    maintaining the relevant IT system (99 person days p.a., €31,500 IT costs, based on the
    evaluation).
     The quota systems will continue to create costs for companies (€11,000 p.a. based on
    evaluation) and authorities (60 person days p.a. for Commission, some costs also for
    Member States, based on the evaluation), decreasing only slightly in the long term.
     The currently infeasible halon prohibition will, according to the evaluation, create costs
    for aviation companies (120 person days), Member States (120 person days) and the
    Commission (320 person days) until a viable alternative is found.
    2.1.3. 2.1.3. Incomplete monitoring and reporting
    (i) Status quo of the issue
    While the evaluation found that the monitoring system in place is by and large adequate,
    except for the possibility of adding a few substances for monitoring, some Member State
    authorities and representatives of civil society suggested additions to get an even better
    overview, especially in view of the current shift towards also recognising the climate
    relevance of ODS. In particular, the system lacks mandatory reporting on:
     Feedstock use and destruction of new ODS (Annex II) despite high amounts (about
    half of Annex I substances in tODP);
     Emissions resulting from production and destruction by all emitters and at substance
    level. Some aggregate ODS emissions are monitored by the European Pollutant
    34 Due to the manual process many licenses are not checked at customs today
    35
    Cross-cutting IT costs for licensing, registration and quota: 168 person days annual plus 177,700 annual IT
    implementation costs (see Table A4.7 and A4.8 in Annex 4)
    12
    Release and Transfer Register (Regulation (EC) No 166/2006 requiring Member
    States to report emissions from industrial facilities), but some thresholds apply and
    not all ODS emitters are in scope. Furthermore, the aggregate parameter based on
    weight does not allow to determine the relevance for the ozone layer (tODP) and the
    climate (tCO2e)36;
     The climate impact of ODS (Global Warming Potential (GWP)) is not conveyed.
     Intra-EU trade in ODS by producers, destruction facilities and feedstock/process
    agent users;
     Despite being used in significant quantities (production volumes in metric tonnes
    exceed those of Annex I substances several times37
    ), a number of substances with an
    ODP are currently not listed in the Regulation and therefore not monitored with a
    view to identifying future risks.
    (ii) Drivers
    There are no requirements in the Regulation mandating reporting on the substances and
    parameters listed above.
    (iii) How the problem will evolve
    Without addressing the monitoring gaps, the picture of ODS uses and emissions would
    remain incomplete. This would in particular affect the appreciation of climate-relevant
    emissions and emerging issues that would not be monitored in support of on-going research
    regarding their impacts. Some of the relevant trade flows would remain incompletely
    monitored and there would be less control on illegal trade within the Union. The lack of intra-
    EU data also makes reporting on production to the Protocol more difficult, as this needs to be
    done at Member State level. This is e.g. an issue in case an ODS is produced in one Member
    State, but used as feedstock or destroyed in another.
    2.1.4. 2.1.4. Coherence and clarifications
    (i) Status quo of the issue
    The long experience in the implementation and enforcement of ODS legislation has led to a
    good integration of the Regulation within the EU environmental legal framework. However,
    as pointed out by the evaluation, some further coherence and clarity should be achieved on
    the following issues:
     Lack of coherence with the Montreal Protocol: Technological progress has allowed the
    tightening of the international rules under the Montreal Protocol on destruction
    technologies and process agent uses and their limits.
     Lack of legal coherence with the more recent Regulation (EU) 182/2011, which lays
    down the rules for the control of the Commission’s exercise of its implementing powers:
    36
    ODS have widely varying ODPs and GWPs, so that it is necessary to have emission values at substance level
    to determine effects on ozone layer and climate
    37
    But produced quantities in tODP are significantly smaller than those of Annex I substances, since the
    unmonitored substances have rather low ODPs
    13
    The Regulation needs to be aligned with that Regulation (where it refers to Directive
    1999/468/EC) and also needs to be aligned with the Treaty (where it refers to regulatory
    procedure with scrutiny)
     Lack of coherence with customs legislation: Better coherence with the customs rules is
    relevant for preventing illegal trade in a more effective way. A 2020 operation by the
    World Custom Organisation called DEMETER VI, where a number of EU Member States
    participated, found illegal shipments involving 11 tonnes of ODS38
    . While this is not at the
    alleged level of illegal trade for fluorinated gases, custom officials have made the point
    that the role of customs in controlling imports is not sufficiently clear in the Regulation
    which complicates enforcement. Special temporary custom procedures, such as transit,
    have been pinpointed as areas where trade facilitation may be exploited for illegal
    activities. Many stakeholders have emphasised that the ODS Regulation and the
    Regulation (EU) No 517/2014 (F-gas39 Regulation) should take similar approaches as
    they concern similar sectors and objectives (emission prevention). Currently the usefulness
    of the CERTEX/Single Window system is limited as relevant input data such as net mass
    is not provided with the customs declaration.
     Currently it is difficult to judge if national penalties have a dissuasive effect and non-
    compliance with relevant measures may not be treated as a criminal offence. Business
    stakeholders report large discrepancies between rules in different Member States, and
    industry associations request more harmonised and dissuasive penalties to discourage
    illegal activities.40
    Directive 2008/99/EC on the protection of the environment through
    criminal law establishes that the illegal production, trade, placing on the market or use of
    ozone-depleting substances is a criminal offence. As it will be substantially amended,
    coherence is currently not ensured.
     Differences with the F-gas Regulation: (Exempted) ODS, in contrast to F-gases, can be
    placed on the market without a requirement to destroy or capture the strong greenhouse
    gas HFC-23, which is often a by-product during the manufacturing process.
    Finally, as indicated by the evaluation, there is also some scope for simplification and
    clarifications of the text. As these are not believed to have measurable impacts, they form
    part of all policy options. They are listed in Annex 7.
    (ii) Drivers
    The following drivers are relevant:
     The Regulation is not updated to binding international rules as regards allowed destruction
    technologies and process agent uses and their limits.
     The Regulation includes several references to the old ‘regulatory procedure with scrutiny’
    for which no automatic alignment is envisaged by law.
    38
    DEMETER VII (2021) only discovered 101 kg of substances, but additionally 493 pieces of equipment
    controlled by the Protocol
    39
    “F-gases” = fluorinated greenhouse gases, as defined by Regulation (EU) No 517/2014
    40 This issue was also identified by F-gas and custom experts group that met several times between 2019 to
    2021 to discuss illegal HFC trade. The Commission financed the group under the The Customs 2020
    Programme.
    14
     Some time limits relating to customs procedures are not aligned and the obligations of
    custom authorities are not explicitly specified in the Regulation. A clear legal base for
    requiring the net mass to be specified in customs documents is lacking.
     The Regulation specifies the need for proportionate and dissuasive penalties but does not
    mention criminal offence.
     The Regulation does not mirror relevant obligations on producers in the F-gas Regulation
    as regards the destruction or capture of HFC-23 by-production.
    (iii) How the problem will evolve
    With the current legal framework, the EU would not be able to align fully with international
    rules and could even risk non-compliance. Non-alignment with custom rules will prevent
    more efficient controls going forward and likely result in additional emissions. Similarly,
    non-alignment with EU rules on environmental crimes, taking into account developments on
    the review of the Environmental Crimes Directive, and a lack of harmonisation of penalty
    rules would prevent coherent implementation across the Union. Potential emissions may also
    arise from a non-alignment with the F-gas Regulation as it leaves some loopholes on
    producer obligations.41
    3. 3. WHY SHOULD THE EU ACT?
    3.1. 3.1. Legal basis
    The legal basis for taking action is Article 191 of the Treaty on the Functioning of the
    European Union, in line with the objective to preserve, protect and improve the quality of the
    environment; protect human health; and to promote measures at international level to deal
    with climate change.
    3.2. 3.2. Subsidiarity: Necessity of EU action
    The EU and the EU Member States, as parties to the Protocol, have a number of requirements
    to fulfil (see 1.2) at the international level. There are similar requirements in international
    trade agreements that the EU has concluded. The EU is considered a regional economic
    integration organisation (REIO) under the Protocol, and therefore complies with these
    requirements at Union level (e.g. reporting, licensing system, consumption phase-out), which
    requires relevant legislation at the same level. Only for the Protocol’s ODS production phase-
    out schedules is it the Member States42 that need to comply with this provision individually.
    A hypothetical implementation of these commitments under the Protocol at Member State
    level is very difficult to reconcile with the general principles of the EU internal market
    and the free movement of goods. The evaluation concluded that only a common and
    harmonised EU approach can effectively implement the Protocol’s obligations and respect
    internal market rules.
    41
    The F-gas Regulation is also currently being reviewed.
    42
    Only a few Member States continue to have ODS production (Czech Republic, France, Germany, Italy and
    The Netherlands)
    15
    3.3. 3.3. Subsidiarity: Added value of EU action
    Compared to the counter-factual scenario where national systems for licensing
    import/exports, phase-outs, and reporting would need to be implemented, the EU level
    approach provides much higher efficiency for authorities and undertakings, in particular for
    companies operating in more than one EU Member State. By way of example, the trade and
    transfer of recovered, recycled and reclaimed ODS (Annex I)43 strongly benefits from the
    interconnected EU market and harmonised rules for cross-border movement of goods. As
    estimated by the evaluation, the needed additional measures for national implementation of
    the Regulation compared to the current situation would increase the administrative effort by a
    factor larger than 18. Furthermore, Member States would likely implement different
    legislative approaches. Even though a few could choose to be more ambitious at the national
    level, the sum of national ODS legislation would likely be less ambitious than an overall EU-
    wide approach, as confirmed by industry and authorities alike. Likewise, undertakings would
    need to ensure that they comply with different requirements set by the countries where they
    operate. The EU added value is fully confirmed by the favourable opinion among
    stakeholders towards regulating ODS at EU level.
    4. 4. OBJECTIVES: WHAT IS TO BE ACHIEVED?
    4.1. 4.1. General (review) objectives
    The EU should take action and provide solutions in order to examine if more ambitious
    emission reductions in line with the Green Deal are possible. Furthermore, while it is
    paramount to have an ambitious EU policy in place to protect the ozone layer and contribute
    to fighting climate change as well as to ensure compliance rules under the Protocol (and
    bilateral trade agreements), this should be achieved in a more efficient, coherent and clear
    manner, while maintaining and/or improving controls. .
    4.2. 4.2. Specific (review) objectives
    Fit for the European Green Deal:
    A. Achieve a higher level of additional emission reductions
    Fine-tuning the design of the Regulation:
    B. Improve the efficiency of the Regulation while preserving the significant emission
    reductions achieved so far
    C. Ensure more comprehensive monitoring
    D. Improve coherence and clarifications
    43
    Very relevant today for some ODS, given that new production is prohibited at the global level while still
    required in critical applications (e.g. halons) and for effective destruction at end-of-life of ODS equipment.
    16
    5. 5. WHAT ARE THE AVAILABLE POLICY OPTIONS?
    5.1. 5.1. What is the baseline from which options are assessed?
    The baseline, against which policy options are assessed, assumes that the current Regulation
    and implementing acts remain in place unchanged.
    5.1.1. 5.1.1. Baseline for environmental impacts
    The main relevant environmental impacts are linked to releases of ODS into the atmosphere,
    causing harmful damage to the ozone layer and the climate, due to their ODP and high GWP.
    The basis for estimating future emissions is the estimated developments of the parameters
    production, trade, use44
    and stocks/banks, from which emissions can occur, in addition to the
    associated emission factors. An exhaustive discussion of methodology and assumptions made
    (e.g. Table A4.3) is given in Annex 4. Table A4.4 shows the modelled future development of
    the underlying parameters.
    Future overall ODS emissions are largely determined by the emissions from insulating foam
    banks (see Fig. 1), both in ozone (tODP) and climate (tCO2e) terms. Emissions will rise from
    current levels of ca 6,000 to peak levels of 6,700 tODP (i.e. from 37 to 43 MtCO2e) around
    2033, and will only start to decrease after that, as the amounts of legacy material (i.e. ODS
    foams in old buildings) entering the waste stream each year will start to fall only after 2030
    (Fig. A6.1 in Annex 6). Still, emissions will still be 4,000 tODP (23 million tCO2e) in 2050.
    Emissions will continue for many years after, at slowly decreasing levels, as the contribution
    of slow but sustained emissions from landfilled material, where the ODS was not destroyed,
    will become relatively more important.
    Emissions from all other sources are two to three magnitudes lower, so their contribution to
    the overall emissions is very low (Table A4.4 in Annex 4). In the baseline, emissions from
    production and feedstock uses are largely sustained, with moderate decreases expected for
    Annex I ODS only in the long run. Emissions from process agent uses will disappear in the
    long run as the remaining legacy plants using them will close (use by new installations is not
    permitted), and halon use will be phased out by 2040. This would also end related emissions
    as long as any remaining stocks are destroyed. Laboratory and analytical uses will continue
    unchanged, but emissions from these processes are minuscule (< 1 tODP).
    5.1.2. 5.1.2. Baseline for economic impacts
    At this stage, the Regulation no longer requires any major shifts towards ODS alternatives (as
    this has been largely accomplished). Therefore the cost baseline for businesses, Member
    States and the Commission (plus EEA) are essentially limited to administrative costs. There
    may, however, be some compliance costs for halon users to meet the remaining prohibition
    dates and for emission prevention measures. The cost data are primarily taken from the
    evaluation and projected until 2050, taking into account the expected changes to ODS market
    parameters (Table A4.4), where relevant, see tables A4.5 and A4.6 in Annex 4 for details on
    44
    I.e. use as feedstock, process agents, laboratory and analytical, critical halon applications
    17
    cost drivers.45 Furthermore, the cost trajectories between 2020 and 2050 are split by type of
    stakeholder and by the relevant measures resulting in these costs, such as licensing, quota
    allocations, monitoring, reporting, etc.
    For business, annual administrative costs of ca. €300.000 would decline only slightly
    until 2050 in the baseline scenario (an overall decline of less than 10% is forecasted; see
    table A4.7 in Annex 4). The two most important cost categories are licensing and reporting
    requirements. The overall use of ODS, to which these obligations are linked, will decline
    very slowly over time. This means that fewer businesses will need to provide reporting and
    apply for licences. At the same time, those businesses that still do, will spend less time on
    these activities due to (slightly) lower ODS volumes (and a lower number of substances) to
    license and report. On the other hand, registration costs for laboratories and compliance costs
    to business related to emission controls, following protocols on destruction and reclamation,
    as well as inspections are assumed to remain constant in the long run.
    The administrative costs for Member States would remain the same, at very modest
    levels. These costs (<€40.000 p.a. see table A4.8 in Annex 4) are mainly linked to reporting.
    Member States also need to carry out inspections, custom controls and general enforcement
    matters (ca. 507 person days in total annually).
    The annual administrative costs at European level (Commission and EEA) would
    increase further until 2025, and decrease slightly thereafter. Annual costs for the
    Commission would increase from ca. 788 person days to ca. 825 person days (see table A4.8
    in Annex 4). The main reason for the initial increase is rising personnel costs for the
    Commission related to the registration and licensing systems caused by more stringent
    requirements on data protection and security issues. Costs related to the day-to-day treatment
    of registration of laboratories would remain constant. Many other cost categories are
    expected to decline slightly over time, in line with the slowly declining use of ODS. Costs
    remain constant for general support topics such as ensuring compliance in MS, providing
    access to documents, outreach activities, advice to stakeholders etc. The costs to the EEA
    linked to the reporting systems are projected to continue but with an increase in IT project
    management costs as noted above for the Commission.
    Effects of COVID-19. Targeted stakeholders representing the relevant types affected by the
    Regulation (see synopsis report, Annex 2) were routinely asked about the effects of the
    pandemic on their business. Most respondents were not able to indicate concrete impacts of
    the COVID-19 pandemic or to provide estimations on how the crisis would affect the
    expected impacts of the policy options. This is confirmed by the most recent company
    reporting data for 2020 on production and trade which is within the expected range.46
    However, one feedstock user expected that dichloromethane (DCM), which is used in the
    pharmaceutical sector, would be produced in increased amounts in the EU in the future, as
    the production of certain pharmaceuticals will be pulled from emerging markets back to
    Europe (relevant to option C5). One supplier of laboratories in the EU indicated that slightly
    45
    Inflation is not taken into account in the costs. For comparison impacts in real terms are more relevant.
    46
    EEA. EU (ODS) data summary 2021. Preliminary findings (not published)
    18
    fewer orders from customers had been observed recently, while another pointed out that the
    simplifications considered for the ODS licensing system (i.e. option B1) would probably
    increase the resilience of their business. An aircraft manufacturer stated that the aerospace
    sector has been significantly impacted and indicated that the research of halon alternatives
    has therefore been delayed by around twelve months, according to internal estimations. This
    delay in R&D would in particular be relevant for finding alternatives to the protection of
    normally unoccupied cargo compartments (see option B6). Most of the effects appear to be
    rather short term, linked to the general economic situation.
    5.1.3. 5.1.3. Baseline for other impacts
    The remaining impacts, which are grouped under social impacts, include impacts on
    employment, research & development, and consumer prices. These impacts are not assessed
    quantitatively, due to the very small expected impact for the baseline scenario (e.g. see costs
    to business identified above) and often a lack of distinct quantitative data at these low levels.
    Future employment is mostly dependent on the production of ODS feedstocks, as these are by
    far the largest quantities still in use, and will depend upon general future trends in the
    (European-based) manufacture of chemicals and their added-value products. Employment in
    this sector will therefore also depend greatly on general economic development. The steady
    progress on R&D and finding new alternatives of the past (in particular halons, process
    agents; less so for feedstock uses)47
    is expected to continue but at a slower rate as the
    remaining ‘leftover uses’ are the most difficult ones to replace. The implementation of
    measure A.4 could potentially increase consumer prices for owners renovating or
    constructing a building. These additional costs compared to the overall costs of constructing
    or refurbishing and retail prices for new property are generally very small. As the foam
    recovery activities would be linked only to major renovations or new construction, vulnerable
    consumers making smaller upkeep renovations would not be affected.
    5.2. 5.2. Description of the policy options
    ODS is a long-standing policy area. On the basis of the evaluation findings, the overall
    approach and main measures of the Regulation are not put into question. Given the EU`s
    international obligations and the need to avoid backsliding, the main rules, shown to be
    effective overall, must remain in place. They cannot be replaced by e.g. voluntary approaches
    or economic incentives. Compared to the past, in EU ODS policy today there is a shift in the
    focus: Rather than phasing out entire chemical groups of substances that was needed in the
    past (e.g. CFCs, HCFCs), it is more about preserving the huge ozone- and climate-relevant
    emission savings that have been achieved in the past, and controlling the remaining uses
    in specialised areas. Therefore, the review will seek to fine tune the Regulation to today’s
    remaining challenges, to maintain good control while using efficient measures.
    To achieve this, a series of feasible measures were identified for each review objective and
    issue listed in section 2. The collected measures were to a large degree proposed by
    stakeholders, in particular the Member State authorities, during the consultations on the
    47 Compare findings of the evaluation
    19
    evaluation and the impact assessment. A number of measures were based on internal
    Commission experience of implementing this policy as well as suggestions by outside
    experts. An overview of the link between the issues and the measures chosen is provide in
    Annex 10.
    As the Regulation is generally fit for purpose, many measures relating to the design of the
    Regulation are targeting rather small issues and the impacts or cost savings related to solving
    these issues are equally small. Nevertheless, it would be a missed opportunity to forgo a
    possible improvement. Furthermore, for some of the issues, the choice of measure to remedy
    the issue was self-evident. For others, several measures were considered and those that
    appeared infeasible or ineffective were discarded, see section 5.3 and Annex 9. The selected
    measures are generally compatible with one another and not mutually exclusive. They are
    grouped into three packages on the basis of their expected (abatement) costs (see Table 2):
     Option 1 includes measures resulting in savings or very low costs only. It focuses
    mainly on simplifications and better coherence and clarifications where these do not
    result in relevant costs, and includes also one very cost-efficient measure to reduce
    emissions (foams recovery limited to the sandwich panel foams).
     Option 2 includes all measures in Option 1 plus additional measures that are expected
    to generate some costs, notably measures targeting emission reductions (e.g. foams
    recovery also from certain laminated panelling) as well as more comprehensive
    monitoring and control.
     Option 3 includes all measures including those with high (abatement) costs.
    In the following sections all the retained individual measures are described in detail and the
    impacts of each measure is analysed, taking into account the feedback provided by
    stakeholders as regards the expected impacts of each measure. Subsequently, an overview of
    the impacts of all measures is provide in Table 3.
    Table 2. The three policy options and the respective policy measures included
    Policy options
    Measures
    Option 1 Option 2 Option 3
    A1 Make destruction mandatory for some types of foam banks
    ((sandwich) panels and (laminated) boards, unless infeasible)
    Panels only
    Panels &
    boards
    Panels &
    boards
    A2 Introduce a negative list for chemical production processes
    A3 Review prohibition dates for equipment containing or relying on
    halons
    A4 Prohibit the destruction of halons
    A5 Prohibit use of Annex II substances in cooling equipment
    B1 Require trader licenses
    B2 Monitoring of illegal goods
    B3 Special custom rules for ODS
    B4 Abolish registration for laboratories
    B5 Abolish annual quota allocation
    B6 Delay requirement for replacing halons in aircraft cargo
    compartments
    20
    C1 Align reporting obligations for substances in Annex II to Annex I
    C2 Require reporting on emissions for ODS production and destruction
    of ODS
    C3 Add global warming potential (GWP) values to Annex I and II
    C4 Require reporting on sales and purchases of ODS within the EU for
    producers, destruction facilities and users.
    C5. Add DCM, PCE and BTP as substances to be reported
    D: All measures improving coherence and clarity
    5.2.1. 5.2.1. Review objective A: Achieve a higher level of additional
    emission reductions
    Almost all respondents in the open public consultation agree that there is a need for further
    reducing emissions from foams at their end of life. Conversely, for feedstock use processes
    where alternatives do not exist, almost all businesses (14 out of 15) are opposed to limiting
    these uses, whereas other stakeholder groups were more open to consider this.
    A1. Require mandatory recovery and destruction of ODS from specific foam banks
    It will become mandatory to recover/capture and destroy ODS by incineration for certain
    types of foams found in construction and demolition waste. An approach based on economic
    incentives was not considered useful as this would likely exacerbate the current situation (see
    section 2.1.1.1) where separate collection of foams would only be undertaken in a few pro-
    active Member States, as financial incentives in the waste sector and producer responsibility
    schemes are prerogatives at national level. The Regulation should list the types of foam for
    which this is considered feasible at reasonable costs at the time of building renovation or
    demolition. The policy option are considering two ambition levels: While Option 1 includes
    only metal-faced panels (measure A1(a)), whose separate collection is rather straightforward
    and where the economic business case is best due to the recovery of the metal part, Option 2
    and 3 include laminated boards (measure A1(b)), where feasibility of recovery depends on
    the place of installation (see Annex 6). In cases where the installation (in floors, attached to
    concrete etc.) makes foam separation difficult, the burden of proving infeasibility would lie
    with the building owner and the contractor performing the works. If recovery is not done,
    they would need to keep evidence for up to 5 years why foam separation from other building
    materials was considered infeasible. Such evidence could be e.g. building audit
    documentation carried out before demolition.
    Member States would need to enforce this obligation. This effort may often be linked to other
    requirements in existing national legislation on renovation/demolition works, waste policy
    and the need for separation of materials, in particular in light of objectives for a circular
    economy.
    A2. Introduce a negative list for chemical production processes where alternatives exist
    The use of ODS as feedstock will become prohibited in two types of processes: (i) the use of
    CTC to produce PCE, and (ii) the use of HCFC-22 to produce TFE. In both cases alternatives
    21
    appear to be commercially available.48 This option could include that further processes would
    be added in the future via comitology procedure. Chemical producers using these synthesis
    pathways would need to modify their production processes in order to use alternative
    processes without ODS. Member States would need to ensure compliance.
    A3. Move forward prohibition dates for equipment using halons
    Prohibitions for using halons will be moved forward from 2035 to 2030 for fire protection of
    (i) engine compartments on military ground vehicles and (ii) normally unoccupied engine
    spaces on military surface ships. The evaluation and stakeholder input indicate that
    retrofitting with ODS alternatives appears to be already feasible in these cases. This would
    place an obligation on the military to either replace or retrofit such halon equipment more
    quickly, which could result in significant, unforeseen costs. Member States would need to
    ensure compliance.
    A4. Prohibit the destruction of halons
    Destruction of halons will be prohibited, with certain exemptions e.g. in case the quality of
    the recovered halon is not sufficient to allow any reclamation and reuse. This would place
    obligations on operators using halon-equipment to ensure proper recovery and reuse.
    Undertakings may be required to keep records for five years for any halons that are destroyed
    anyway, detailing the technical reasons for the destruction. Member States would need to
    enforce this obligation, in particular to avoid venting by operators.
    A5. Prohibit the use of Annex II substances in new refrigeration and air conditioning
    equipment
    It will be prohibited to place on the market Annex II ODS in cooling equipment. This would
    notably prevent the further use of trifluoroiodomethane (CF3I) as a refrigerant (blend).
    Equipment manufacturers would need to stop using this substance as a part of refrigerant
    blends in their appliances. Member States would need to ensure compliance.
    5.2.2. 5.2.2. Review objective B: Improve the efficiency of the Regulation
    while preserving the significant emission reductions achieved so far
    Most respondents in the open public consultation consider the simplification of the licensing
    system in light of the Single Window as well as prevention of illegal activities to be (very)
    important. As regards the importance of simplifying registration for laboratory uses, all
    businesses (including two laboratory users) and most public authorities agree this is (very)
    important. Furthermore, all industry respondents and most public authorities find if (very)
    important to abolish the quota system. Aviation industry has highlighted the infeasibility of
    one halon prohibition which was confirmed by authorities.
    B1. Modernise the licensing system in view of the EU Single Window Environment for
    Customs (“Single Window”): Introduce trader licences for ODS bulk and equipment
    48
    Ramboll (2019). Support study for the evaluation of Regulation (EC) No 1005/2009 on substances that
    deplete the ozone layer. Final Report.
    22
    The requirement to have an ODS import and export licence per shipment will be replaced by
    a requirement to have a periodic ODS licence for each trader stating the conditions under
    which the trader may import or export (trader licence). The Single Window will allow per
    shipment controls of imports and exports on the basis of data in the customs documents and
    an automatic cross-check with the Commission’s ODS licensing system. To complete the
    overview, and given the lower administrative burden of the automatic system, the substance
    listed in Annex IIA will be included in Annex I, with the only additional change being that
    licensing will also be required for this substance. This makes an application for ODS licences
    prior to the import/export and the (partly) manual approval of licences by the Commission
    prior to custom clearance obsolete. This measure should only enter into force when the Single
    Window is in place in all Member States. The EC would need to adjust its database to allow
    for trader licences. Economic operators would need to only apply for relevant trader licences
    (once a year or even less frequently).
    B2. Better monitoring of illegal goods
    To ensure better control at less resources, custom controls should increasingly rely on
    automatic controls (see B1 above). To enable these controls for relevant customs procedures,
    the trader will be required to specify the 8 or 10-digit TARIC49 code. This will allow an
    identification of the ODS (group) and thus enable better controls of ODS submitted to these
    procedures. The requirements for custom documents would need to be changed. The
    economic operators would need to provide the code any time such a procedure is launched.
    The existing requirement to present a declaration of critical use for reclaimed halons for
    obtaining a license for import will instead be required as a certificate at the moment of
    import. Furthermore, it should be clarified that goods (including non-refillable cylinders) that
    may not be placed on the market in the EU should also be prohibited from physical entry into
    the customs territory of the Union. This measure includes prohibiting the placing on the
    market of ODS (bulk and in products and equipment) online. Customs would identify such
    shipments as ODS-policy relevant and carry out risk-based controls to ensure the Regulation
    is enforced. Surveillance authorities should monitor goods offered online.
    B3. Special custom rules for ODS
    To be able to better identify illegal activities at lower administrative effort, relevant customs
    procedures will only be permitted for goods sent to particular destination custom offices. This
    may affect the logistics of legitimate traders, but should not affect the volumes of trade.
    Member States would need to identify the customs offices that are equipped to handle ODS
    trade to ensure good control. Customs should control, using risk-based approaches, if the
    conditions are provided for such shipments.
    B4. Abolish the registration system for laboratories
    49
    TARIC = Integrated tariff of the EU
    https://ec.europa.eu/taxation_customs/business/calculation-customs-duties/what-is-common-customs-
    tariff/taric_en
    23
    The requirement for laboratories to register will be abolished. Instead, suppliers and
    purchasers should keep records with specific information on the quantities and specific uses
    for five years. This requirement will facilitate the control of improper use and collection of
    information for identification of e.g. progress on alternatives. Member States would have to
    ensure compliance of the requirements of permitted and prohibited uses (Commission
    Regulation 291/2011). Shipment data collected via the Single Window could be checked
    automatically for any unusual amounts or import activities related to such intended uses
    Reporting would ensure further overview of production and use.
    B5. Abolish the annual quota allocation process
    The annual quota requirements for feedstock, process agents, halons for critical uses and
    laboratory and/or analytical uses will be abolished. Shipment data collected via the
    CERTEX/Single Window can be checked automatically for any unusual amounts or import
    activities related to such intended uses. Reporting will ensure further overview of production
    and use.
    B6. Delay the requirement of using non-halon fire protection for normally unoccupied
    cargo compartments in newly type certified aircraft
    The cut-off date from which it is no longer allowed to submit an application for type
    certification for an aircraft that uses halons in fire protection of unoccupied cargo
    compartments will be moved from 2018 to 2024 to take into account that alternative solutions
    have not yet been successfully qualified and certified. Aircraft producers that submit an
    application for type certification will no longer have to provide the relevant technical data to
    their Member State to justify requesting a Commission Decision allowing a derogation from
    the cut-off date. This timeline would align with rules in place by the ICAO (International
    Civil Aviation Organization).
    5.2.3. 5.2.3. Review objective C: Ensure more comprehensive monitoring
    All non-business stakeholder groups in the open public consultation placed high importance
    on additional reporting measures, whereas businesses were divided on this issue.
    C1. Require reporting on use as feedstock, process agents and destruction also for new
    ODS (Annex II)
    The reporting requirements for new ODS will be aligned with those of ODS (Annex I) to give
    a better overview of the uses of the former. This will slightly extend the reporting scope for
    those companies that have not already been reporting such data voluntarily. The possibility is
    already enabled in the reporting system run be the EEA.
    C2. Require reporting on emissions at substance level for the production and
    destruction of ODS
    Producers and destruction facilities will be obliged to report their ODS emissions50, by
    substance. No changes to the reporting system run by the EEA will be needed.
    50
    Currently not a requirement but often reported voluntarily.
    24
    C3. Add global warming potential (GWP) values to increase awareness of the climate
    impacts of ODS
    The relevant GWP value for each ODS (Annex I and II) will be added. No additional
    requirements for authorities or economic operators would arise from this change.
    C4. Require reporting on sales and purchase of ODS (Annex I) also for producers,
    destruction facilities and feedstock and process agent users
    Reporting will be required on intra-EU trade to better monitor the supply chain of ODS and
    facilitate compliance with reporting obligations under the Protocol.51,52 This will extend the
    reporting scope for those companies. The possibility is already enabled in the reporting
    system run by the EEA.
    C5. Add new substances to Annex II B
    Three substances with an ODP, which could become relevant53, will be added to Annex II B
    (monitoring), namely 2-BTP54, dichloromethane (DCM), and perchloroethylene (PCE), so
    that their trade and use can be monitored. 2-BTP is likely to be produced in larger quantities
    in the future as an alternative to halons. PCE is used in high volumes in the EU (between
    100.000 – 1.000.000 metric tonnes according to REACH registration). DCM is of concern as
    it accounts for the majority of the rise in total chlorine in the atmosphere from very-short
    lived substances (VSLS).55 From the European Pollutant Release and Transfer Register (E-
    PRTR)56 data it appears that emissions of DCM may be 31 tODP per year.57
    This will extend
    the reporting scope for affected companies. Adding the three substances requires only minor
    changes to the EEA’s reporting system.
    5.2.4. 5.2.4. Review objective D: Improve coherence
    Many of the suggestions to ensure better coherence and clarification have been provided by
    stakeholders in the context of the evaluation and in the context of the consultation activities
    for this review. Two thirds of the respondents to the open public consultation found it (very)
    important to ensure a clearer and more accessible legal text of the Regulation.
    Alignment with the Montreal Protocol
    51
    Currently such data is only required from importers and exporters
    52
    For reporting on production at Member State level, also intra-EU trade is relevant. Reporting is only needed
    for Annex I substances
    53
    There are a number of other substances with an ODP that are currently also not monitored. Some of these
    are emitted from other (natural) sources or sectors (e.g. from agriculture) that the Regulation is ill suited to
    address. For others, their contribution to endangering the ozone layer or the climate is rather small as the
    quantities in use are small or their ODP/GWP is minimal. Unsaturated HCFCs (or HCFOs) are not considered
    here since this substance group is included for monitoring under the F-gas Regulation.
    54
    2-bromo-3,3,3-trifluoroprop-1-ene
    55
    According to the Protocol’s Scientific Advisory Panel (SAP), emissions of anthropogenic VSLS chlorine affects
    stratospheric ozone. A sustained future increase in atmospheric concentrations of DCM would therefore slow
    the recovery of the Antarctic ozone hole.
    56
    Emission Pollutant Release and Transfer Register. https://prtr.eea.europa.eu/#/home
    57
    This number is similar to total known Annex I feedstock emissions.
    25
    D1. Update Annex VII on destruction technologies on the basis of Decision XXX/6 of the
    Protocol.
    The Regulation needs to be updated in line with international requirements, updating the list
    of acceptable destruction technologies for different ODS groups. This affects destruction
    companies and requires oversight by authorities. All approved technologies by Protocol
    parties will be allowed, while the Commission retains an empowerment to regulate otherwise.
    D2. Adjust process agent use and emission limits on basis of the Decision XXXI/6 of the
    Protocol.
    The Regulation needs to be updated in line with international requirements, further restricting
    the list of uses where ODS can be employed as process agents and related maximum limits.
    Actual use and emissions process agent uses are already in line with these new limits.
    Alignment with comitology rules
    D3. Adjust the Regulation to new rules on comitology and delegated acts
    The Regulation should be aligned with the new comitology rules envisaged under Regulation
    (EU) 182/2011. The Regulation still includes references to the possibility to update and adopt
    changes to the Regulation by using the outdated ‘regulatory procedure with scrutiny’. It
    remains important that the Regulation empowers the Commission, where appropriate under
    Article 290 of the TFEU to adjust or complement the rules of the Regulation quickly, taking
    into account international developments and/or to account for (lack of) progress on
    alternatives.
    Alignment with customs law terminology and procedures
    D4. Require the addition of net mass (and operator’s ID) to customs declaration (in
    view of the EU Single Window Environment for Customs)
    This would allow full functionality of the Single Window by allowing for automatic quantity
    management of imported ODS and two-way identification of the economic operator. It
    requires the importer to provide this information in the customs documents.
    D5. Remove Annex IV (CN codes)
    As CN codes are adjustable in the TARIC code, this annex needs to be updated frequently to
    avoid being outdated. Thus removing the Annex will prevent inconsistencies and unnecessary
    procedures to change the Regulation.
    D6. Clearly spell out obligations of customs and economic operators
    The role of customs is clarified by naming the customs procedures subjected to envisaged
    measures, the existence of certificates to be checked, as well as their content on a risk basis.
    Customs should confiscate the illegal goods and dispose of them as appropriate and re-export
    should not be allowed. These measures will facilitate a more uniform enforcement by
    customs and competent authorities.
    Alignment with Directive 2008/99/EC (Environmental crimes directive)
    26
    D7. Penalties related to the protection of the environment
    This measure is making adjustments on the current Article 29 (penalties) taking into account
    that Directive 2008/99/EC on the protection of the environment through criminal law is being
    reviewed at the same time as the Regulation. The Commission’s proposal was adopted
    recently.58
    Alignment with Regulation (EU) No 517/2014 (F-gas Regulation)
    D8. Prohibit the placing on the market of ODS (Annex I & II) unless producers or
    importers provide evidence that trifluoromethane (HFC-23) produced as a by-product
    during the manufacturing process is in line with best available techniques
    The F-gas Regulation requires that highly climate warming HFC-23 emissions must be
    prevented during the production of F-gases that are being placed on the market. For
    consistency, a similar requirement should apply to ODS imported or produced in the EU.
    This obligation is in all likelihood already complied with by all EU producers and would
    mainly hold imported ODS up to the same standard. The need to control this can be flagged
    in the TARIC code and it is not expected that it will be necessary to substantially increase
    enforcement activities for Member States.
    In addition, a number of additional clarifications are considered (see Annex 7).
    5.3. 5.3. Measures discarded at an early stage
    During the stakeholder consultation exercise, a number of additional measures were
    proposed. Some of these were screened out early on due to a lack of feasibility (either of a
    technical, legal, enforcement, effectiveness and efficiency or general nature). These
    options are summarised in Annex 9.
    6. 6. WHAT ARE THE IMPACTS OF THE MEASURES IN THE POLICY OPTIONS?
    6.1. 6.1. Achieve a higher level of additional emission reductions
    A1. Require mandatory recovery and destruction of ODS from some foam banks
    The environmental benefit of this measure is very high, in particular in climate terms,
    due to the high GWP of the ODS used in these foams. This option is supported by both
    authorities and businesses consulted. Recycling experts consider that recovery and
    destruction is feasible today for some foam banks, e.g. metal-faced panels59 and, to some
    extent for laminated boards, depending on where these have been installed60. These foams are
    in principal recoverable for destruction if separated during renovation or demolition of
    buildings. On the other hand, a separate collection of block foams and spray foams would be
    very difficult to achieve. A full recovery of metal-faced panels would save up to 18,200
    58
    COM(2021) 851
    59
    The business case for metal-faced panels is more favourable as the metal can be recovered and sold.
    60
    Boards from built-up systems or cavity structure are in principal recoverable, while floor insulation boards
    are not (See Annex 6 for details).
    27
    tODP or 88 million tCO2e until 2050, which is ca 14% of all ODS in foams reaching end-of-
    life (in CO2e) in that period (Option 1: measure A1(a)). If, in addition, 25% of foams from
    laminated panels in built-up systems and cavity structures61
    are recovered (Option 2 and 3:
    measure A1(b)), this would save an additional 14,000 tODP or 91 million tCO2e until 205062,
    which is 28% of all ODS in foams reaching end-of-life (in CO2e) in that period. The success
    rate will ultimately depend on the enforcement of the requirements and on the synergy with
    other relevant legislation prescribing separation and recovery of construction and demolition
    materials. There are clear synergies with the Waste Framework Directive (WFD) that set a
    2020 Member States target of 70% preparation of construction and demolition wastes for re-
    use, recycling and recovery. The WFD also promotes waste prevention through improving
    planning and logistics on construction sites and selective demolition and sorting at source.
    The costs appear proportionate in climate terms and are distributed over many years
    and a large number of building owners and developers. Based on stakeholder interviews it
    seems that the technical and economic feasibility of recovery has improved since the situation
    10 years ago. Businesses indicated that a large fraction of the costs are labour costs due to the
    work involved in the collection and separation of construction and demolition wastes, rather
    than transport or destruction costs. Member States have very different legislative and
    technical approaches to the demolition of buildings and requirements to recover, separate,
    treat etc. different components of construction and demolition wastes. Where such legislation
    exists, a separate recovery of foams would be facilitated by these requirements and additional
    costs would be rather low. It is very difficult to set an average recovery cost for the EU as a
    whole by material type due to the cost dependency on country specifics (e.g. country waste
    regulations). In two case studies from Austria and the Netherlands63
    , recovery costs for
    panels and boards were determined as €1050-1200/t raw material. In addition, incineration
    costs may be up to €2500-3500/t. Abatement costs based on these two case studies indicate
    that total abatement costs for the two scenarios would be roughly 450 million € for Option
    A1(a), and an additional 1.53 billion € for Option A1(b), which would in turn represent
    abatement costs of 25,000 €/tODP (A1a) and 87,000-132,000 €/tODP (2). In climate terms,
    this translates into abatement costs of 5.1 €/tCO2e (A1b) and 15.0-18.4 €/tCO2e (2),
    61 Conservative estimate of which laminated boards are feasible to recover. This is because e.g. floor-installed
    boards will not be included, building audits may prove infeasibility of separation and there may be emission
    losses due to broken/damaged boards during separation.
    62
    Total savings from option 2 is almost corresponding to the total greenhouse gas emissions (UNFCCC) in the
    Netherlands in 2019 (181 million tCO2e)
    63
    In the NL example, the data obtained considers full recycling of ODS panels including prevention of
    emissions following an interview with an innovative recycling company. This example is for a regulatory
    environment where segregation and recovery is already mandated. In AT, the interviews with established
    waste management companies resulted in data for a business case on recovering and incinerating the panels
    to prevent emissions. In AT transport costs are higher, but the major driver of costs are the local incineration
    costs for hazardous wastes. A similar case of high incineration costs was found for SE. Conversely, the latter
    costs (but also landfilling costs) are usually cheaper in countries with less prescriptive waste regulations (e.g.
    BG).
    28
    respectively.64
    These moderate abatement costs in terms of CO2 are achieved due to the
    strong climate-warming effects of the gases used in the foams, but may be higher in some
    Member States. Reliable cost estimates for all Member States, especially those where waste
    separation methods were less established, were difficult to obtain65
    . The data for Austria and
    the Netherlands, while being only from two countries, does still provide a useful overview as
    they present two different “business cases” for proper management of ODS containing
    panels. In order to approximate how high costs could likely get in other cases, costs for
    asbestos recovery from buildings was also considered as an absolute worst-case cost
    approximation. These proxy costs66
    relate to the effort required for asbestos separation,
    transport and incineration and were determined to be € 228 per tCO2e. Given the costly
    worker protection measures required for asbestos, which are not needed for ODS foams, real
    costs for foam treatment would be lower and therefore well below costs considered
    proportionate as abatement costs to reach carbon neutrality by 2050.67
    Finally, many
    countries for which costs on foam separation are not available, such as Eastern countries,
    have a relatively low share of the ODS foams bank as their use was not as widespread as in
    Northern and Western Europe.
    Some authorities raised concerns regarding costs of this measure. The costs would in all
    likelihood be borne by building owners undertaking substantial overhaul or refurbishment
    activities, as demolition/renovation contractors are expected to pass these on. Thus they are
    distributed over a large number of persons and the additional costs compared to the overall
    costs of demolishing or refurbishing the building would tend to be rather small. Real estate
    prices are not expected to be affected by the requirement. As for small, vulnerable
    consumers, replacement of foams is not usually linked to necessary maintenance or
    emergency reparations.
    This measure is expected to spur innovation and R&D on demolition, reclamation and
    recycling technologies, according to the experts consulted. This would in turn yield better and
    cheaper ways of ensuring recovery and support the aims of a circular economy. The measure
    may create some additional need for training specialised personnel in the relevant companies,
    which are often SMEs. On the other hand, as a result, there may be positive effects on
    employment due to the labour-intensiveness of the decommissioning process and the need
    for more treatment capacity for these types of wastes. Using the current revenue-to-employee
    ratios by a typical recycling plant treating foams in fridges, this could be extrapolated to 215
    FTEs for scenario 1, and close to 2400 FTEs for scenario 2. Positive knock-on effects on the
    efficiency of refrigerator recycling from these activities is also expected.
    64
    This numbers are slightly lower than what SKM Enviros (2012) estimated in 2012, i.e. ca. €25/tCO2 for metal-
    faced panels (scenario 1) and €50/tCO2 for laminated boards (additional part of scenario 2) for AU, ES, CZ, CY
    and UK.
    65
    Recent relevant data was available for AU, DE, NL, SE and, for comparison, UK; little information could be
    found for BG, CZ, CY, ES, FR, and RO.
    66
    Assuming asbestos panels would contain 220g of CFC-11 (similar to foam panels). Prices for asbestos were
    obtained for NL, AU, F, ES and BG. Price ranges in these countries were relatively similar and varied from 25 –
    153 €/m2
    of panel.
    67
    To reach climate neutrality, economy-wide costs are modelled as ca. €390 /tCO2e abated
    29
    A2. Introduce a negative list for chemical production processes where alternatives exist
    The environmental benefits of this measure are uncertain. While the identified processes
    where alternatives appear to be available represent 38% of all ODS used for feedstock in the
    EU in metric tonnes, they represent only 1.6% of total feedstock emissions in ODP,
    according to data reported by industry. The yearly savings possible are therefore below 1
    tODP (or less than 10,000 tCO2e). In addition, there may, according to a number of industry
    stakeholders, be (i) higher energy costs of alternative production systems (e.g. due to higher
    temperature processes for the alternative production of TFE), (ii) an increased risk of other
    greenhouse gases such as HFC-23 being emitted and a less efficient process resulting in
    unwanted by-products (TFE production), and (iii) less efficient use of an existing by-product
    from other processes (CTC) which would have no other use and require incineration (PCE
    production), which all result in negative environmental impacts. Accordingly, businesses
    expressed strong concerns on the technical and economic feasibility of the alternative
    pathways. Finally, if negative listing of these processes leads to the relocation of chemical
    production facilities outside the EU, any emissions benefits may not be realised at all, as the
    emission controls at non-EU facilities are frequently lower.
    The measure could result in very significant economic costs for the companies involved
    and negative effects on employment. By way of example, a major TFE producer68 claims
    that an annual €500 million value-added production line is entirely dependent on the pathway
    using HCFC-22 involving employment for 1600 persons. A change to a different process
    would involve “hundreds of million €” of investment, so that it is likely that production of
    TFE would be moved outside of the EU instead of the company investing in alternative
    processes. Stakeholders pointed out that relocation outside of the EU would also lead to a loss
    of jobs in industries that are relevant in terms of added-value and employment. As regards
    PCE production69, an offshoring of production as a result of the policy measures appears less
    likely, but additional costs for producers would arise from having to incinerate, rather than
    consume CTC from by-production, and for having to purify the chloromethane flow. Member
    States would incur some additional costs for inspections. Industry stakeholders suggested
    instead to consider more cost-effective policy options for this sector such as setting emission
    limits under the IED. The latter may require additional measures to reduce emission losses to
    stay within the limits according to best practices, but would not require scrapping of the
    whole production line as would a prohibition of use.
    A3. Move forward prohibition dates for equipment using halons
    The measure may achieve some emission savings. The emissions of critical use halons
    where a suitable alternative is available for retrofit of equipment are estimated at 6.9 ODPt in
    2030. This would theoretically provide total savings of ca. 35 tODP by bringing forward the
    prohibitions by 5 years (or roughly 44,000 tCO2e for the whole period), but it is likely that
    the military users concerned will gradually retrofit or replace the equipment in advance of the
    2035 ‘end date’ following their regular replacement schedules, so that real savings are likely
    68
    There are in total four companies reporting the use of this process in the EU.
    69
    Two companies are reporting the use of this process in the EU.
    30
    to be lower. While some businesses and authorities agreed that this option may lead to
    emissions savings, an expert on the use of halons in military applications and member of
    HTOC indicated that the quantities in the halon bank as well as emissions are low compared
    to other relevant ODS emission sources.
    High economic impacts for the military are likely. Authorities pointed out the potentially
    high costs for the military to switch from halons and highlighted the importance of halons for
    existing defence material and maintenance contracts. If the Member State is simply
    advancing the retrofitting of existing equipment, it could simply be a matter of the timing of
    the costs, while the overall the costs in fact stay the same. However, if the intention is to
    scrap the vehicle or ship between 2030 and 2035, additional costs would be involved to either
    retrofit the equipment before 2030 or to advance the scrapping to before 2030. It has not been
    possible to get information from Member States that would allow an estimation of such
    additional costs. However, to provide an indication of the magnitude on the basis of
    information received from one Member State70
    , the total expense for retrofitting fire
    protection systems for all their current military vehicles and ships with halons could be in the
    order of EUR 15 million for vehicles and EUR 0.5 million for ships. Assuming that other
    Member States are in a similar situation and assuming that only a share of their total fleet
    with halons would undergo additional retrofitting, possible costs for the additional retrofitting
    could be at least in the tens of millions of euros in total71. Abatement costs were determined
    as €1,265,000/tODP or €203/tCO2e. In addition to this, higher depreciation costs related to
    early scrapping must be considered. One competent authority believed that this option could
    have negative impacts on the capabilities of defence forces and the safety of soldiers as a
    result.
    A4. Prohibit the destruction of halons
    A positive environmental impact will be achieved from the avoidance of new production of
    halons in the future.72 Due to the continuing demand for critical uses at global level, this is
    unlikely to be guaranteed otherwise. Allowing production in the future would lead to
    additional emissions.73
    The EU annual demand is currently between 30–40 metric tonnes,
    which would need to be replenished if stocks expire. Additional annual emissions linked to
    these quantities from production and use could be around 21 tODP or close to 15,000
    tCO2e.74 Further demand exists in many other countries in the world, which would need to be
    addressed in case of a global shortage, and which is likely to have much more important
    environmental impacts. By avoiding restarting production of halons, more efforts to prevent
    leaks from equipment globally is likely as well as an increased use of alternatives, which
    70
    Despite the efforts made by the external experts, data on costs for the military were very difficult to obtain
    71
    Given that the situation for Member States is in reality very different, actual costs are very hard to
    determine and this estimation can only give an idea of the magnitude to be expected.
    72
    Currently not allowed under the Protocol.
    73
    The exact amounts are difficult to predict as it depends on many factors including the actions of other major
    economies, the development of the aviation sector and any future international rules including under the
    Protocol. It is therefore not possible to give an abatement cost for this measure given these uncertainties.
    74
    This assumes 0.02% emissions from new production and 0.5% emissions from use of these quantities (see
    Table A4.2 in Annex 4)
    31
    would add to the benefits. Good enforcement is needed to prevent a perverse incentive for
    owners of halon stock to vent the gases rather than recover them as a result of this policy
    option.
    The measure could result in some additional costs to owners of halon stocks when
    reclamation, transport and sale is more expensive than the cost of destruction. Generally,
    there could be a good business case due to the high re-sale value of the gas after
    reclamation75, which could go up in the future due to the expected increasing scarcity of
    stocks. This changes when halons need to be transported long distance to reclamation
    facilities, in particular across borders, as they are treated as hazardous waste.76 The amounts
    recovered may in this case be too small to allow stock owners to fully recover their costs
    under current market conditions. Thus, depending on the circumstances, the option will either
    result in benefits or minor costs for businesses. Companies will also incur minor
    administrative expenses as they need to keep records on halon recovery and treatment. Since
    there will continue to be demand for halons in the future, their re-use will become more
    economically favourable. Some Member States have introduced legislation to address this
    issue such as national halon banks, but some also expressed concern on potential cost
    increases due to a need for additional enforcement and checks.
    A5. Prohibit the use of Annex II substances in refrigeration and air conditioning
    equipment
    The environmental benefit of this policy option is uncertain. The ODP of CF3I is rather
    low (0.01-0.02) and its use in refrigerant blends in cooling equipment is very limited so far.
    Any potential ozone-relevant emission savings from disallowing the (future) use of this
    substance in refrigerant blends would need to be examined in light of reducing the choice and
    availability of refrigerants that are more climate-friendly than the highly warming HFCs that
    they aim to replace, with potentially much more substantial amounts of climate-relevant
    emissions to be saved.77 In particular, adding small amounts of CF3I reduces the flammability
    of low GWP refrigerant blends, allowing them to be used more easily as alternatives in
    applications where this may be required. A number of different stakeholders stressed the
    importance of CF3I as an HFC alternative.
    The economic impacts of this policy option are difficult to assess. Given the rapid
    development of the cooling market and the number of new refrigerant choices available since
    2014 as result of the F-gas Regulation, it is very difficult to speculate at this moment how
    much any blend using CF3I will in the future be adopted by equipment manufacturers and
    end-users, and thus be a suitable and cost-effective alternative. For the same reason,
    determining an abatement cost is not feasible. There would be a negative impact for some
    75
    The destruction of halons costs between €2–3.5 per kg. The market price of halon 1301 and 2402 are ca 100
    EUR and 200 EUR per kg, respectively, but could double up to 2025/2030. Reclamation costs of halons are
    estimated at EUR 4 per kg once the gas is at the facility.
    76
    Shipment costs of €1070-1250 to reclamation site based on estimations by Member State experts.
    77
    Regulation (EU) No 517/2014 (F-gas Regulation) is strongly driving the replacement of high GWP HFCs in the
    cooling sector, in order to reduce direct emissions of highly warming greenhouse gases (HFCs).
    32
    chemical producers that invested in using CF3I to make their HFC alternatives marketable
    and safe, as mentioned by authorities, industry and other stakeholders alike.
    6.2. 6.2. Improve the efficiency of the Ozone Regulation while preserving the
    significant emission reductions achieved so far
    The following measures have been conceived in order to maintain (and in some cases
    improve) controls at lower costs. Even though these efficiency gains are the main rationale,
    there are some environmental gains to be expected for these measures from improved
    oversight, such as regards the control of illegal trade, but these are difficult to quantify.
    B1. Modernise the licensing system in view of the EU Single Window Environment for
    Customs: Introduce trader licenses for ODS bulk and equipment
    This measure is expected to lower administrative costs for businesses applying for longer
    term trade licences (import/export) instead of pre-approved licences at shipment level,
    including for SMEs. Businesses indicated that such a change would lead to a reduction in
    person hours of between 13% to 80% 78 and could save 163-395 days overall (€49,000-
    119.000).79 Member States will save resources mostly due to the use of the Single Window
    itself irrespective of trader or shipment licenses, due to more efficient and automatic customs
    treatment procedures. This time saving is estimated at 30 to 45 minutes per shipment (EC,
    2020)80. In the open public consultation, many respondents placed high importance on the
    simplification of the licensing system in view of the EU Single Window environment for
    Customs. Industry stakeholders explained that the current system is overly bureaucratic,
    requiring significant paperwork and time for each individual shipment of ODS.
    For the European Commission, licensing costs will go down as the number of licences
    goes down. Assuming the number of per-shipment licences is reduced from 1,859 in 2019 to
    275 under the Single Window environment (which is an average of three trader licences per
    company in 2019, and a reduction of 85%), costs could drop to less than 20% of the baseline
    by 2025. In terms of number of days, this would save the EC 95 person-days per year, from a
    total of 132 days per year spent in the baseline scenario. There are, however, one-off costs for
    changing the IT system to accommodate for trader licenses.
    The measure will, in combination with the Single Window, allow for a complete storing of
    shipment data (since this is done automatically and no dependency on custom closing
    licenses as currently the case) and the possibility for follow-up of any suspicious activities,
    and thus would increase the controls on illegal trade. A number of authorities, including
    customs, supported the measure, but pointed to the fact that the EU-wide rollout of the Single
    Window will not be immediate, meaning the current system would need to be maintained
    78
    Based on the response of five companies
    79
    Data from the evaluation, based on 13 respondents, yields total costs of the existing system as 309 days
    (2076 yearly licenses * 1.1 hours per license / 7.4 working hours per day, This confirms the magnitude of the
    administrative burden that may to a large degree be saved.
    80
    European Commission. SWD IMPACT ASSESSMENT REPORT Accompanying the document Proposal for a
    Regulation of the European Parliament and of the Council establishing the European Union Single Window
    Environment for Customs Proposal [..].
    https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CONSIL:ST_12529_2020_ADD_3&from=EN
    33
    until then. Some authorities expressed doubts on the achievable environmental benefits, as
    they consider that the current licensing system is working well.
    B2. Better monitoring of illegal goods
    This measure allows better control over illegal activities but leads to small
    administrative costs for the importer, as the 8/10-digit TARIC code would need to be
    specified in the customs declaration for relevant custom procedures, which is not mandatory
    so far. There are indications that these procedures are exploited for illegal activities as recent
    custom seizures indicate, but the overall extent is not known. Customs would incur costs due
    to carrying out controls on a risk basis, but the automatic controls via CERTEX/Single
    Window should make such controls more efficient. Stakeholders generally supported the
    extension of control to relevant customs procedures. A few authorities warned that this could
    increase the administrative burden on them.
    B3. Special customs rules for ODS
    This measure allows better control over illegal activities at moderate costs to importers.
    For traders, logistics and/or administrative costs may increase due to restrictions as to which
    customs offices can be used. However this is expected to be a transitory issue as frequent
    traders would adapt to these new rules quickly. Support was expressed by industry and some
    Member States for limiting the use of special procedures to certain custom offices equipped
    to handle ODS. The possibility in the transit procedure to legally change the destination
    customs office may limit the controls over that procedure. Furthermore, consistency of
    customs rules with the F-gas Regulation81 is important for many stakeholders. Customs
    would incur costs due to controls on a risk basis. Customs authorities interviewed indicated
    that the control of ODS should be rather strict. If well implemented, the additional
    administrative burden would likely be low, but vary depending on the volume of illicit
    trafficking.
    B4. Abolish the registration system for laboratories
    This measure will result in cost savings for companies as it will decrease the
    administrative burden on the 2,211 laboratories that registered in 2020.82
    The total cost
    avoided each year would be around €50,000 (see evaluation). Laboratories and other entities
    that will be impacted by this measure are often SMEs. These savings are generally welcomed
    by stakeholders. One industry representative said in the stakeholder workshop that the current
    system is excessive compared to the quantities covered. Requesting instead 5-year record
    keeping will slightly reduce the savings, but laboratories should already be keeping track
    currently of substance acquisition, and this would therefore only entail ensuring that this
    information is not deleted. Some ODS suppliers expressed concern that some of these costs
    may be shifted to them for ensuring ODS are not misused for other prohibited purposes.
    There are savings for the European Commission amounting to 72 days per year of processing
    laboratory registrations and another 27 person days per year related to the development and
    81
    Also currently under review.
    82
    In addition to others that may not be complying with the obligation.
    34
    maintenance of the related IT system. Member States may have some enforcement costs, but
    as the quantities and risks are low in this case, such action is expected to be very light. Some
    authorities also feared that there may be less overview and control over this ODS use in the
    future. Generally however the lack of registration should not result in additional emissions
    given the small amounts of ODS involved and the control of trade by e.g. monitoring and
    licensing.
    B5. Abolish the annual quota allocation process
    This measure will result in cost savings for companies and authorities. This modification
    will decrease administrative burden on businesses including SMEs, saving them €11,000 per
    year with respect to the baseline. This does not include additional costs saved where the
    import quota application turned out to be too low and the company had to buy ODS on the
    EU market at high purchase prices in case of requiring bulk ODS at short notice without
    having applied for quota. While businesses were in favour of abolishing quota allocations,
    authorities had mixed views on its feasibility, as some of them were concerned that the
    system would not effectively control the quantities and application types. While Member
    States already have low costs, the European Commission would achieve savings of 60 person
    days per year related to the allocation of quotas. No additional emissions are expected as the
    necessary control is achieved through e.g. monitoring and licensing.
    B6. Delay the requirement of using non-halon fire protection for normally unoccupied
    cargo compartments in newly type certified aircraft
    This measure will result in cost savings for companies and authorities. Authorities and
    businesses alike highlighted positive economic impacts from removing the need to request
    corresponding derogations. Without this measure, aviation companies would need to ask for
    case-by-case derogations due to the current infeasibility to meet the 2018 prohibition. 3 to 4
    derogation requests could be submitted to the European Commission until 2024 from
    Member States on behalf of operators of airplanes having such compartments, without the
    deadline change. These companies could therefore avoid the costs linked to preparing the
    case by providing all the relevant technical data (estimated to be at least 30 person days per
    derogation depending upon complexity). The concerned Member State would avoid costs for
    preparing the derogation request to the Commission (15-30 person days per derogation).
    Likewise, the Commission would not incur administrative costs for treating, issuing and
    monitoring such derogations (40 person days per derogation per year83). In total, costs
    avoided could be 120 person days for both the aviation industry and Member State
    authorities, and up to 320 person days84 for the European Commission. As mentioned by
    some businesses, no environmental impacts are expected as there are currently no suitable
    alternatives, meaning the use of halons will have to continue, either by derogations or by
    delaying the deadline. No additional emissions are expected, as the delay of the deadline is
    83
    Based on data from evaluation (322 days for 8 derogations in period 2010-2017)
    84
    Treatment of 4 derogations and their monitoring for 2 years (The Regulation could be applying from 2023
    and derogations would therefore be avoided until 31 December 2024, i.e. for two years)
    35
    due to the fact that no technical options exist, so the use (and any potential future emissions)
    cannot be avoided at this time.
    6.3. 6.3. Ensure more comprehensive monitoring
    The rationale for these measures is to have a better understanding and overview of remaining
    ODS-related trade and use, for authorities, stakeholders and the public. In enabling better
    controls and early warning on any worrying trends, there is an inherent environmental
    benefit to all these measures, which is however difficult to quantify.
    C1. Require reporting on use as feedstock, process agents and destruction also for
    new ODS (Annex II)
    Stakeholders were rather confident that the additional costs for this requirement are
    rather low. Concerned stakeholders acknowledged that the data are, for the most part,
    already collected today (voluntarily) and could be reported without noteworthy increases in
    administrative costs. The benefit of this measure is a much better understanding of the use of
    those gases in the chemical industry, as stated by some authorities. The affected stakeholders
    are existing reporting companies, especially feedstock users, and additional administrative
    burden on businesses is estimated as being up to €5,500 per year for all undertakings
    combined. Annexes I and II data reporting requirements already require the same type of
    primary data collection, so the required data by the measure is often already available and
    does not need a separate collection. In addition, the feedstock produced is often also used by
    another part of the company conglomerate, which means that in these cases additional
    reporting on use is minimal. This policy measure has no impact on costs for the reporting
    system run by the EEA, since the additional reporting parameters are already included in the
    IT system.
    C2. Require reporting on emissions at substance level for the production and
    destruction of ODS
    This measure is expected to slightly increase the administrative burden for some of the
    affected businesses. Two businesses indicated higher costs corresponding to 1-2 and 1-5
    additional working days per year, whilst one business even estimated no increase in costs
    because of similar information already collected for the IED and the E-PRTR. One Business
    representative stated in the stakeholder workshop that the reporting focus should be on
    monitoring emissions rather than quantities used as currently the case. Producers account for
    approximately 50% of entities who report on ODS. This measure implies that the reporting
    costs go up by up to €20,000 per year for all undertakings in total (based on a 2025 baseline).
    These additional costs are not expected to change over time if production of ODS stays
    stable. Some companies may already collect such data as was the case for 2 out of 4
    companies interviewed, meaning this measure would not increase their costs. No additional
    costs are expected for the EEA reporting system, as it is already equipped to handle emissions
    reporting by producers and destruction facilities on a voluntary basis today. Given the
    relevance of knowing the emissions of these highly warming gases more accurately and
    36
    comprehensively than obtained currently from other sources such as E-PRTR85
    there is a
    strong environmental rationale for monitoring them more closely. One competent
    authority suggested to additionally include (fugitive) emissions from stocks in order to
    capture all relevant and potential emission sources.
    C3. Add global warming potential (GWP) values to increase awareness of the climate
    impacts of ODS
    This policy measure is an awareness raising measure and does not have immediate
    economic or social impacts. However, it is important in case other greenhouse gas relevant
    legislation points to the climate impact of these gases and for emission monitoring (in
    combination with C2). Although a majority of the authorities supported this revision,
    questions were raised by some on added value and environmental benefits.
    C4. Require reporting on sales and purchases of controlled ODS (Annex I) also for
    producers, destruction facilities and feedstock and process agent users
    This measure is expected to slightly increase the administrative burden for some of the
    affected businesses. Reporting intra-EU sales is expected to impact most businesses who are
    still involved with ODS. However, most trade flows are expected to be linked to a select
    number of multinational companies, as by far the largest quantities of use are linked to
    feedstock. Similar to some of the other monitoring measures above, some business
    stakeholders indicated this would not increase costs for them substantially, as data is already
    collected internally. Businesses indicated additional costs to be from 0 up to 3 working days.
    Assuming an additional 20% in reporting effort for 50% of companies, the impact would
    amount to €13,000 per year for all undertakings combined. These additional costs are not
    expected to change with time assuming the production of ODS stays stable. The main benefit
    will result from better control on existing trade flows, which may be desirable in case the
    traditional control systems such as quotas and registrations are removed (supporting the
    putting in place of efficiency measures B4 and B5).
    C5. Add new substances to Annex II B
    This measure is expected to increase the administrative burden for some of the affected
    businesses. From the stakeholder consultation, the expected additional reporting cost for a
    large business to report on the production of a new ODS is one to two weeks of person days
    per year. Some authorities referred to potential future positive environmental impacts of the
    measure as it would allow for informed decisions on potentially controlling their use in the
    future based on the reported data. On the other hand, businesses often considered the
    environmental impacts of potential new ODS as low since they do not remain for a very long
    time in the atmosphere (VSLS). As DCM is produced using methylchloride (already in
    Annex II) as a feedstock, existing reporting data on the latter substance (e.g. 14 companies)
    can be used as a proxy for the number of companies likely to be faced with an additional
    reporting requirement on production. This would add 21 weeks of yearly reporting effort for
    85 E-PRTR emission data is limited for monitoring of climate effects since it is not reported for individual
    substances included in the Ozone Regulation and has a different scope, due entities covered, as well as
    capacity and pollutant thresholds.
    37
    all producers combined, which totals €6,200 per year of additional reporting costs.86
    For PCE
    there are only 8 registrants in the REACH database, 5 of which already report under this
    Regulation. PCE is commonly used as a dry cleaning agent, but these users (e.g. the dry
    cleaning industry and its 1000s of SMEs) would not be covered by the reporting obligation.
    From E-PRTR, 30 companies report PCE industrial activities, not all of which would fall
    under the new reporting requirement. 45 weeks73
    of additional reporting effort are estimated
    in total, or €13,300 additional reporting burden per annum. The impacts of inclusion of 2-
    BTP are expected to be even lower, as this is chemical produced or imported in lower
    volumes and by a few companies only. Based on these considerations, about €25,000 in total
    additional costs can be expected for reporters. Adding three substances to the reporting
    system requires only minimal changes to the EEA reporting system.
    6.4. 6.4. Improve coherence and clarity
    These measures are not expected to have significant economic and environmental impacts.
    Across consultation activities, all stakeholders generally agreed that it is important to have a
    clearer and more accessible legal text of the Regulation. Most options contribute to
    improving compliance and enforcement by providing clarifications. Option D3 may help to
    avoid costs for business and authorities by allowing to adjust infeasible obligations, and help
    the environment if progress on alternatives is reflected in a more timely way. The customs
    alignment measure allows for better customs controls and are widely supported by
    stakeholders including customs authorities consulted. Measure D8 may have a positive
    environmental impact for cases where this obligations is not already complied with by
    fluorocarbon producers outside the EU.
    7. 7. HOW DO THE OPTIONS COMPARE?
    Table 3 provides an overview of the impacts of the measures in the three policy options.
    Table 3. Overview of impacts for the each measures included in each of the 3 options
    Measures Environment
    Economic impacts – cost increases or savings (per
    year unless otherwise specified)
    Indirect
    economic/
    social
    Business
    Member
    States
    EC/
    EEA
    Option 1
    A1
    (a)
    Foam bank recovery
    Sandwich Panels
    only
    (++)
    up to 18,200 tODP
    Or 88 MtCO2e
    (-/--)
    Abatement costs87:
    €25,000/tODP
    €5.1/tCO2e
    (-)
    Enforcement
    costs
    N/A
    (+) R&D,
    (+)
    Employment
    : 215 FTEs,
    (+/-) Real
    estate prices
    86 Assuming 1.5 week per company based on stakeholder feedback
    87
    Costs could be higher in some Member States but should be well below €228€/tCO2e (asbestos proxy costs)
    in all cases
    38
    B1 Trader licences
    Positive due to better
    controls with CERTEX/Single
    Window
    (++)
    Total savings of
    49,000-119,000
    Benefits from
    CERTEX/Singl
    e Window
    (++)
    95 person
    days
    savings
    One-off
    costs for IT
    changes
    N/A
    B4
    Abolish laboratory
    register
    0
    (++)
    € 50,000 savings
    (0/-)
    enforcement
    (++)
    99 person
    days
    savings
    € 31,500
    IT savings
    N/A
    B5 Abolish quota 0
    (+)
    Savings of
    € 11,000
    (+)
    Small savings
    (+)
    Savings of
    60 person
    days
    N/A
    B6
    Delay one halon cut-
    off date for aircraft
    cargo
    compartments to
    2024
    0
    (++)
    Savings of 120+
    person days
    (€36,000)
    (++)
    Savings of up
    to 120 person
    days
    (++)
    Savings of
    up to 320
    person
    days
    N/A
    C1 Annex II reporting
    (+)
    Better overview on ODS use
    (-)
    € 5,500
    N/A N/A N/A
    C3 Add GWP to Annex
    (+)
    Better awareness on climate
    effects
    0 N/A N/A N/A
    Option 2 (includes also all measures of Option 1)
    A1
    (b)
    Foam bank recovery
    also for laminated
    boards
    (+++)
    Additional 14 000 tODP=
    90 MtCO2e
    [i.e. in total for panels and
    boards (A1(a)+A1(b)):
    up to 32,000 tODP
    Or 179 MtCO2e]
    (-/--)
    Abatement costs87
    :
    €87,000-132,000 /
    tODP
    €15.0-18.4 /
    tCO2e
    (-)
    Enforcement
    costs
    N/A
    (++) R&D,
    (++)
    Employment
    : 2400 FTEs,
    (+/-) Real
    estate prices
    A4 Halons destruction
    (+)
    Max 21 tODP and 15,000
    tCO2e annually by
    avoiding new production
    requires good enforcement
    /positive global ODS policy
    implications
    (0/-)
    Good re-sale value,
    but (cross-border)
    transport may be
    costlier for some,
    record keeping
    (-)
    Some
    enforcement
    costs
    N/A N/A
    B2
    Better monitoring of
    illegal goods
    (++)
    (reduced illegal trade)
    (-)
    More data to
    customs
    (-)
    Follow-up on
    suspicious
    cases
    (-)
    Follow-up
    on
    suspicious
    cases
    N/A
    B3
    Special custom rules
    for ODS
    (-)
    Less flexibility
    (-)
    More
    obligations to
    check
    N/A N/A
    C2
    Report production
    emissions
    (+)
    Better knowledge on
    climate emissions
    (-)
    € 20,000
    N/A N/A N/A
    C4
    Report intra-EU
    sales
    (+)
    Better overview of ODS
    trade
    (-)
    € 13,000
    N/A N/A N/A
    C5
    New Annex II
    substances
    (+)
    Better overview of future
    risks
    (-)
    €25,000
    N/A
    (0/-)
    Update of
    EEA
    reporting
    system
    N/A
    Option 3 (includes also all measures of Options 1 & 2)
    A2
    Feedstock negative
    list
    (+/-)
    (highly uncertain benefits)
    (---)
    Potentially high
    impact, > €100
    million capital
    (-)
    € 4,000
    (-)
    Up to
    €10,000
    for
    (- --)
    Employment
    : Loss of
    several 1000
    39
    investment cost if
    production facilities
    displaced
    maintenan
    ce of
    negative
    list
    FTEs
    possible
    (+/-) R&D
    (0/-)
    Consumer
    prices
    A3 Halons end dates
    (+)
    max
    35 tODP or
    0,044 MtCO2e p.a.
    N/A
    (--)
    > € 10
    million88
    across 2020 -
    2035
    N/A N/A
    A5 Annex II RACHP
    (+/-)
    (positive for ODP, but
    uncertain future CO2e
    emission balance)
    (-)
    Possibly higher
    costs for endusers,
    manufacturers,gas
    producers
    N/A N/A N/A
    Legend: Scale applied is +++,++,+,0,-,--,--- (very high/positive to very low/negative); Corresponding colour
    codes are dark/medium/light red, yellow (neutral), light/medium/dark green
    All 3 Options include the measures to improve clarity and coherence, aligning with the Protocol (D1-2), with
    comitology rules (D3), customs law (D4-6), the environmental crimes directive (D7), and the F-gas Regulation
    (D8). As alignment measures, these are not resulting in relevant additional impacts.
    The low-cost option (Option 1) would save a relevant amount of emissions (18,200 tODP or
    88 million tCO2e until 2050) due to the mandatory reclamation and destruction of ODS from
    sandwich panels (the most cost-efficient type of foam to be recovered). It would achieve
    costs savings for business and authorities by modernising the licensing system, abolishing
    quotas and the laboratory registration system as well as allowing more time to eliminate
    halons in aircraft cargo compartments. Very minor costs linked to reporting (C1) may be
    incurred. Given the fact that it fails to achieve other proportionate emission savings (i.e.
    measure A1(b)), and does not include a number of efficiency and monitoring measures with
    environmental benefits at moderate costs, its effectiveness and coherence with the Green
    Deal is only slightly positive. On the other hand, as it comes at a very low costs, its economic
    effects are negligible, cost efficiency is good and social effects (employment) are positive due
    to in particular R&D and job creation in the waste treatment sector.
    Option 2 would almost double the emission savings from foams (32,000 tODP or 179 Mt
    CO2e), still at moderate abatement costs, as well as reducing the risk that new production of
    halons will be needed, ensure that border controls can be improved and that relevant data is
    available to monitor climate effects, any emerging issues and as yet unmonitored trade flows.
    Additional costs largely arise from the foam measure (for building owners) but these will be
    spread over many years and number of persons/entities. Finally, there are some reporting
    costs to companies, and some enforcement costs for customs. Option 2 is very effective and
    in line with the Green Deal as it achieves a high amount of emission reductions at
    proportionate costs. While the cost efficiency of the measures is good, there are some
    additional costs linked to better control and monitoring. Employment is stimulated in the
    waste sector.
    88 Costs are difficult to estimate given the different situation of the military in Member States.
    40
    The overall emission savings of Option 3 are only very marginally higher than Option 2. This
    is because the major emission savings potential is linked to the recovery of foams, which is
    the same for both options. Also, some of the smaller additional achievable emission savings
    from Option 3 may cancel out due to negative effects on e.g. energy use and emissions of
    other greenhouse gases (HFCs). Prohibiting some feedstock uses and anticipating halon end
    dates would likely lead to very high costs to business and the military and may have
    considerable detrimental effects on employment (despite the stimulus in the waste sector).
    Given these costs, its coherence with the Green Deal is considered to be lower than in Option
    2, even though a similar amount of emissions is saved.
    The coherence options as well as clarifications are included in all three ambition scenarios.
    By design they all constitute improvements, however their impacts could not be quantified.
    41
    Table 4: Comparison of the impacts of the options
    Policy options
    Impacts and cost efficiency
    Option 1 Option 2 Option 3
    Effectiveness / emission reductions + +++ +++
    Coherence with the European Green Deal + +++ ++
    Economic impacts +/- - - -
    Cost efficiency ++ ++ ---
    Social impact + ++ --
    +++/++/+ positive, -/--/--- negative
    8. 8. PREFERRED OPTION
    The preferred option is Option 2. It achieves significantly more emission savings than the
    low cost option and is therefore more coherent with the European Green Deal than Option 1
    (See Table 4). Moreover, compared to the forecasted costs in the EU long term strategy
    needed to reach climate neutrality (€390/tCO2e), the abatement costs for Option 2 are
    very reasonable and proportionate to what is asked of other sectors. On the other hand,
    Option 3 would add considerable costs at only incremental and possibly doubtful
    environmental benefit.
    The preferred option is characterised as follows:
     The main additional way of avoiding emissions, in climate and ozone terms, is to
    make explicit requirements on recovering some foams from construction and
    demolition waste and destroying the ODS contained therein;
     It should also be prohibited to destroy halons to preserve stocks for the remaining
    critical uses until these have all disappeared, to prevent a future need for new
    production of halons;
     All options that are meant to reduce the burden on companies and authorities and/or
    improving the controls in place are included;
     All options to improve monitoring are included;
     All options to improve coherence and clarifications are included.
    8.1. 8.1. REFIT (simplification and improved efficiency)
    A significant focus of this review is on increasing efficiency of the existing measures, rather
    than creating new ones, given that this is a Regulation that has been evolving over three
    decades. The cost savings achievable by some of these efficiency measures are outlined in
    Table 5. In addition, two efficiency measures (B2 and B3) aim at increasing customs controls
    in order to control illegal trade more tightly at little extra cost.
    42
    Table 5. Refit costs savings of the preferred option
    REFIT Cost Savings – Preferred Option(s)
    Description Amount Comments
    Implementation of a trader licence (B1).
    Businesses apply for trade licences
    instead of per-shipment licences to
    reduce administrative costs.
    Undertakings: €49,000-
    119,000 per year
    EC: 95 person days per year
    Non-aviation importers and
    exporters are the recipient of the
    recurrent cost saving.
    Abolish the registration requirements in
    the LabODS Registry (B4). Reduces the
    administrative burden and IT costs.
    Undertakings: €50.000 per
    year;
    EC: annual 99 person days +
    €31.500 IT maintenance
    and development costs
    Laboratories and other entities
    (including SMEs)
    EC: annual 72 person days for
    processing registrations: 27
    person days on the IT system;
    Abolish annual allocation of quota by
    Commission Decisions (B5). Reduces the
    administrative burden.
    Undertakings: €11.000 per
    year
    EC: 60 person days per year
    Feedstock, process agent, halon
    and laboratory users.
    Also small savings for Member
    States by avoiding preparation of
    Committee meeting
    Delay a halon cut-off date for newly type
    approved aircraft to prevent
    administrative costs for individual
    derogations requests and Commission
    Decisions (B6).
    Undertakings: up to
    €36,000 in total;
    Member States: up to 120
    person days in total;
    EC: up to 320 person days
    in total
    Aviation companies
    9. 9. HOW WILL ACTUAL IMPACTS BE MONITORED AND EVALUATED?
    Future monitoring and evaluation of the Regulation can rely on the Regulation’s company
    reporting data that is collected and aggregated by the EEA each year. A confidential report on
    ODS activities within the EU has been drafted by the EEA for Member State representatives
    and DG CLIMA which includes data on imports, exports, production, destruction, process
    agent use, feedstock use and consumption, stocks and data on new ODS (Annex II). The
    evaluation and this document relies heavily on these data for its analysis. The data reported
    on production, feedstock, destruction, imports and exports are presented to the Ozone
    Secretariat, to comply with the EU’s annual reporting obligation carried out on this basis. In
    addition, there is a public version in the form of a web-based ODS indicator published and
    updated regularly by the EEA. The policy options C1, C2 and C5 would improve the
    completeness of this monitoring, in particular as regards production, feedstock use and
    related emissions of both Annex I and II substances as well as three new ODS added.
    In addition, Member States reporting pursuant to Art. 26 allows to (i) monitor the availability
    of halon stocks to satisfy the remaining critical uses, and to (ii) report on illegal trade
    activities which may give an indication of the success of aligning with customs rules and
    improving controls, including through modernising the licensing system. Efficiency
    improvements will be monitored by the amount of resources still needed on the EC side, as
    well as the numbers of (traders) licenses that companies would still require.
    43
    The enforcement of the recovery of foam banks would be in the hands of the competent
    Member State authorities. There are synergies with national waste regulations that may
    already monitor the presence of hazardous substances such as ODS in demolition wastes, that
    would allow to better ensure that ODS are indeed recovered for destruction. Given the
    distributed nature of the source (i.e. insulation foams in millions of old buildings everywhere,
    as well as in landfills), regular monitoring of the ODS banks seems difficult to achieve (see
    discarded options).
    An evaluation of the Regulation should be carried out by 2033. In this context, a study similar
    to SKM Enviros (2012) would be needed to estimate the progress on foam banks. The
    evaluation should also examine the developments in administrative costs.
    44
    Annex 1: Procedural information
    1. LEAD DG, DeCIDE PLANNING/CWP REFERENCES
     Lead Directorate-General (DG) of the European Commission: DG Climate Action (DG
    CLIMA).
     The ODS Regulation was selected for the REFIT programme. The preceding evaluation
    has been carried out by Unit A2 - Climate Finance, Mainstreaming, Montreal Protocol.
    The result can be found here:
    https://ec.europa.eu/clima/sites/default/files/ozone/docs/swd_2019_406_en.pdf
     Decide Planning reference: PLAN/2019/927 “Impact Assessment of the Ozone
    Regulation”.
    B. ORGANISATION AND TIMING
     As per the Better Regulation Guidelines, an Interservice Group (ISG) was set up in
    March 2020 on the basis of the ISG for the evaluation to follow up and steer the
    assessment process. The ISG ensured coherence and comprehensiveness with the
    Commission’s overall responsibilities and activities in related policy areas, such as
    environment, economic growth and customs.
     The ISG for this impact assessment involved staff from the following Commission’s
    departments in addition to DG Climate Action: DG ENER, DG ENV, DG GROW, DG
    TAXUD, Legal Service, and Secretariat-General. Also invited to all meetings and
    receiving the background information, but not attending, were DG MOVE and DG
    TRADE.
     The ISG met three times (per videoconference): 23 April 2020, 18 November 2020, and
    23 March 2021. Through these meetings and several written exchanges, the ISG
    participated in the whole impact assessment process leading to the finalisation of the
    external study and this Staff Working Document. A written consultation was made on a
    draft of the final Impact Assessment on 17 May and subsequently bilateral meetings
    were held on 27 May with the Services that provided comments.
     The Commission signed a contract for a support study on the impact assessment
    (contract ref. 340201/2019/815261/ETU/CLIMA.A.2) on 27 November 2019. The final
    report of the support study was approved on 2 June 2021.
     An inception impact assessment was published on 26 March 2020 on the Commission's
    Europa web site89
    . The feedback period was open until 23 April 2020.
     A public consultation ran from 13 July 2020 to 9 November 2020 (17 weeks, extended
    because of summer period and pandemic). The results have been published online.90
    89 https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12310-Ozone-layer-protection-
    revision-of-EU-rules
    90
    https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12310-Ozone-layer-protection-
    revision-of-EU-rules/public-consultation
    45
    C. CONSULTATION OF THE RSB
    The draft impact assessment was submitted to the Board on 2 June 2021.
    The meeting with the Regulatory Scrutiny Board (RSB) took place on 30 June 2021.
    The Board gave a positive opinion but also considered that the report should further improve
    with respect to the description of some measures and options as well as the impact analysis of
    a number of measures
    The Board asked to improve the following:
     The report should present more clearly the measures and policy options. It should
    explain how the individual measures were selected. As regards the measures to reduce
    emissions, the report should justify the focus on obligations and prohibitions, and
    explain why other measures such as economic incentives are not considered. It should
    clarify which types of foam banks are covered by the different options on their
    recovery and destruction and why.
    In response, the description of measures and policy options, including their selection,
    was significantly improved in section 5.2. More detail on foams, including a reference
    to economic incentives, is given in 5.2.1 and Annex 6.
     The report should strengthen the impact analysis. It should increase the robustness of
    the evidence by including information from more countries on the feasibility and costs
    of the mandatory destruction of some types of foam banks. It should clarify the level
    of additional costs for the monitoring of illegal goods. For the measure that introduces
    a negative list for chemical production processes, it should expand on how this
    measure will lead to very significant economic costs for the limited emission
    reductions. The report should strengthen the analysis on the impacts on renovation
    costs, consumer prices and affordability for vulnerable consumers.
    In response, the sections on measure A1 was significantly improved (5.2.1 and 6.2.1).
    In particular, a number of further countries were examined as regards the feasibility
    of foam recovery and destruction. As additional quantitative cost data was difficult to
    obtain, as a proxy a worst-case approximation using asbestos removal was carried
    out for which cost data was available (this was added to section 6.2.1 and Annex 6).
    Further details was also provided on renovation costs, consumer prices and
    vulnerable consumers. The sections on illegal goods and chemical production were
    strengthened.
     The report should elaborate on differences across Member States as regards their
    contribution to remaining emissions. It should explain to what extent impacts are
    expected to differ across Member States, possibly depending on the geographical
    concentration of the most affected sectors, the historic use of products containing
    ODS and existing policies on waste management, including enforcement.
    More information is provided with regards to foams where this is most relevant in the
    Annex 6 and the impacts of measure A1 in section 6.1.
     The report should improve the comparison of options. It should be consistent on the
    scores allocated to each measure.
    46
    This section was improved and inconsistencies avoided, in particular in overview
    tables 3 and 4. Annex 10 was updated to clearly illustrate which measures belong to
    the three options. The selection of the preferred Option 2 was better justified.
    A number of additional improvements were made taking into account the technical
    comments received from the Board, including on how the Regulation links to other
    EU legislation, a better description of the envisaged future customs controls and the
    issue of illegal trade under the problems section (2.1.3), more information on the
    baseline of other impacts,
    D. EVIDENCE, SOURCES AND QUALITY
    This impact assessment draws on a support study carried out by an external consultant
    including an extensive consultation of the relevant stakeholders and experts as well as on the
    internal expertise of the Commission.
    The evidence used for the impact assessment comes from several data sources, in particular
    the annual reports on ozone-depleting substances by the European Environment Agency and
    the consultation with stakeholders, including Member States authorities and undertakings.
    More information is provided in the Annex on methodology below. The support study is the
    source for data in cases where no particular external source is mentioned.
    47
    Annex 2: Synopsis report of stakeholder consultations
    A. INTRODUCTION
    This report summarises the results of the consultation activities carried out for the Impact
    Assessment for amending Regulation (EC) No 1005/2009 on substances that deplete the
    ozone layer (ODS Regulation).
    The consultation aimed to capture feedback from industry, public authorities and civil society
    through:
     An inception impact assessment91
    (IIA), for which the feedback period ran in March
    - April 2020. 4 responses were received.
     A public consultation92
    (OPC) that ran in July - November 2020. 34 respondents
    replied.
     A targeted stakeholder consultation (TSC) that was tailored to ODS businesses,
    NGOs and public authorities and involved 42 stakeholders.
     An online stakeholder workshop held on 26 February 2021 to present preliminary
    results of the impact assessment and ask for stakeholder input on existing data gaps.
    66 stakeholders participated. 12 organisations provided written feedback after the
    event.
    Key stakeholders in the processes were:
    1. Authority
     MS Authorities
     Customs Authorities
    2. Business
     Chemical industry including importers/exporters
     Laboratories
     Aerospace industry (halon users)
     Reclamation/Recycling/Incineration companies
    3. Other
     EU bodies (e.g. European Aviation Safety
    Agency)
     EU citizens
     Non-Governmental Organisations (NGOs)
     International organisations including technical
    panels of the Montreal Protocol
    91 https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12310-Ozone-layer-protection-
    revision-of-EU-rules
    92
    https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12310-Ozone-layer-protection-
    review-of-EU-rules/public-consultation
    48
    B. RESULTS OF THE CONSULTATION ACTIVITIES
    Achieving a higher level of emission reductions
    Respondents were asked about the importance of achieving a higher level of emission
    reductions through the revision of the ODS Regulation and potential impacts of the related
    policy options. Across all consultation activities, all respondents agreed on the importance of
    safeguarding the progress made and most respondents also welcomed maintaining global
    leadership and a higher level of ambition. On the latter, while Authorities and ‘Other’
    stakeholders were mostly in favour of additional ambition, Businesses were divided in their
    views. A Business representative mentioned that the options to achieve a higher level of
    emission reductions should be combined with new reporting obligations on emissions to
    better monitor the progress made.
    Limiting the exempted uses further in line with technological progress
    On the option to prohibit the use of ODS in two chemical production processes where
    alternatives apparently exist, Businesses expressed strong concerns on the technical and
    economic feasibility of the alternatives, e.g. regarding the level of investment, and the
    achievable environmental effects. They flagged that the prohibition may lead to a larger
    amount of ODS to be incinerated and create higher energy use. A Business mentioned that
    the ODS would still exist as by-product from other processes. Hence if its use were
    prohibited, it would need to be destroyed and therefore there would still be an environmental
    impact. A Business indicated that the overall GHG footprint of the alternative production
    pathway is higher than for the current process. However, a few Authorities supported the
    option as they wanted a faster reduction of such uses.
    On the option to anticipate some prohibition dates for fire-fighting equipment containing
    or relying on halons, Authorities and Businesses acknowledged the potential for a positive
    environmental impact, but at the same time stated that the ODS quantities and related
    emissions are low. ‘Other’ stakeholders considered it would not be feasible to review
    prohibitions dates for military applications due to technical limitations. Authorities quoted the
    potentially high costs and highlighted the importance of halons for defence applications.
    On the option to prohibit the destruction of halons, as their production is not anymore
    allowed and stocks are decreasing, most businesses indicated that no significant economic
    impacts would be incurred. However a Business mentioned that halons can be contaminated
    in some cases and therefore cannot be recycled. Another Business stated that the prohibition
    to destroy halons should exempt cases of complex mixtures of chemicals with similar boiling
    points, because the reclamation is not feasible. Authorities mentioned a potential increase of
    their costs due to a need for additional enforcement and checks. Every group indicated
    positive environmental impacts, if the implementation avoids the need for halon production
    to be permitted under the Montreal Protocol. On the other hand, stakeholders also pointed to
    potential adverse environmental impacts if undertakings would release the halons to the
    atmosphere instead of shipping it to a country where demand for halons exists. An Authority
    also noted that prohibition itself may not ensure recycling, due to hazardous waste / waste
    49
    shipment regulation barriers and the lack of demand for recycled halons in some Member
    States.
    Other options for achieving a higher level of emission reductions
    Stakeholders from each group stated that mandating recovery and destruction of foam
    banks is feasible for some cases, e.g. metal-faced panels. Some Authorities raised concerns
    regarding the costs for the proper treatment of the waste. Businesses indicated that a large
    fraction of the costs depends on the level of disaggregation of waste during waste
    management. Additional costs for the separate collection of foam material are likely to vary
    considerably among EU MS, depending on national regulations. Regarding the environmental
    impacts, Authorities and Businesses confirmed that the policy option would have a
    considerable positive environmental impacts in saving emissions.
    Regarding prohibiting the use of new ODS (listed in Annex II) in cooling systems,
    stakeholders from each group stressed that these chemicals replace HFCs, which are
    substances with much higher GWP. All stakeholder groups expected negative economic
    impacts for companies which already invested in using ODS additives to make their HFC
    alternatives marketable and safe. Businesses stated that environmental gain is likely to be
    low, due to the relatively low ODP and atmospheric lifetimes of the new ODS that would be
    prohibited. One Authority indicated that other alternatives for cooling equipment are
    available, which is why the use of an ODS should be prohibited.
    Improving the efficiency of the Regulation while preserving effective prevention of illegal
    activities
    As regards the option to replace per-shipment licences with multi-shipment licences (so-
    called “trader licenses”) for bulk substances and products or equipment with ODS, once the
    Single Window environment for customs93
    is in place, Businesses suggested that recurring
    licensing costs for bulk substances could decrease by up to 80%. Several authorities indicated
    the introduction of trader licenses would not lead to significant changes in their costs, but one
    respondent expected a 50-60% reduction in the number of licences the European Commission
    would be required to process. Only a few Authorities indicated significant positive
    environmental impacts, i.e. a further reduction of illegal trade, from the policy option because
    the current licensing system is considered to work well. Two Authorities mentioned that the
    current ODS Regulation has already successfully introduced multi-shipment licenses for
    aviation equipment. Two Authorities were sceptical about the timeline for the introduction of
    the Single Window Environment.
    All stakeholders supported aligning with customs legislation and including all customs
    procedures in the licensing system, including controlling special customs procedures for
    ODS (such as transit, storage, specific use and processing). Three Authorities considered that
    including customs procedures could increase the administrative burden. No respondent was
    able to provide evidence on environmental impacts. However, it was indicated that the policy
    93 https://ec.europa.eu/taxation_customs/general-information-customs/electronic-customs/eu-single-
    window-environment-for-customs_en
    50
    option might enhance monitoring of shipments to some extent and therefore decrease illegal
    trade. A business welcomed possible improvements envisaged by enabling better custom
    controls, but mentioned the need to ensure consistency between the Regulation on fluorinated
    greenhouse gases (F-gas Regulation) and the ODS Regulation.
    Authorities envisaged that cost savings could be achieved by abolishing the registration
    process for laboratories. One Business was able to indicate the economic impact of the
    abolishment of the registration requirement as a reduction of 25.6 hours per year. The
    concerned laboratories welcomed the proposal as it would decrease their administrative costs.
    However, some other Businesses expected that some of the administrative burden currently
    incurred by laboratories could be shifted to ODS suppliers and Authorities for tracking and
    spot-checking the necessary records. Some Businesses and Authorities also feared that some
    oversight and control of this ODS use might be lost. One Business indicated that the EU’s
    registry is one of few sources of information on the availability of alternatives to ODS in
    laboratory or analytical uses that informs respective bodies under the Montreal Protocol.
    Businesses generally favoured abolishing the annual allocation of quota for import and
    production of ODS. A Business indicated likely positive economic impacts due to EU
    companies being able to import ODS at short notice (without having applied for quota at least
    half a year in advance). Authorities had mixed views, and although they agreed with all other
    stakeholders that the option would result in a reduction in administrative costs, some
    Authorities were concerned about the possible effect on the controls of ODS quantities and
    uses.
    On the option to delay one prohibition concerning the use of halon-based fire protection
    equipment aboard aircraft to 2024, Authorities acknowledged that this cut-off date was
    hard to meet by the aviation industry. Some Businesses mentioned that even the postponed
    date could be hard to comply with. Both Authorities and Businesses highlighted positive
    economic impacts from removing the need to request corresponding derogations from the
    cut-off date. Businesses considered the environmental impacts to be minor.
    Ensuring more comprehensive monitoring
    Respondents were asked about the objective to ensure more comprehensive monitoring of the
    Regulation, while preserving effective prevention of illegal activities, and potential impacts
    of related policy options. Across consultation activities, Authorities and ‘Other’ stakeholders
    placed high importance on additional reporting measures, whereas Businesses were divided
    on this issue.
    An option considered was aligning Businesses and Authorities considered that their costs
    would not increase if reporting obligations for new ODS (listed in Annex II) were aligned
    to those of ODS listed Annex I. A Business highlighted that the required data for new ODS
    was already collected by them and available for reporting or already reported. Some
    Authorities indicated minor positive environmental effects as a result of better oversight,
    particularly with regard to completeness of emissions data from feedstock.
    Authorities and Businesses also indicated that economic impacts of a new reporting
    obligation requiring reporting on emissions for ODS production and destruction would
    51
    be at most minor. However some Businesses mentioned that this option would introduce
    double regulation due to existing reporting obligations under the Industrial Emissions
    Directive (IED) and European Pollutant Release and Transfer Register (E-PRTR). One
    Business estimated no increase in costs, whereas two Businesses indicated higher costs
    corresponding to 1-2 and 1-5 additional working days per year. Environmental benefits were
    indicated by Authorities due to improved oversight.
    Although a slight majority of the Authorities supported to add GWP values to substances
    listed in Annexes I and II of the ODS Regulation as a way to increase awareness of the
    climate impact, some questions were raised on added value and environmental benefits. Both
    Authorities and Businesses indicated no additional costs related to this policy option.
    Businesses assessed this policy option as not beneficial to the environment as the remaining
    use of ODS is mostly feedstock, where ODS are not emitted in significant quantities.
    Authorities and Businesses considered the option to require some ODS users to report on
    ODS sales to/purchases from other EU undertakings as feasible, since many of these
    undertakings already report on their suppliers and recipients. As the relevant data for
    reporting is basically already collected, Businesses indicated additional costs to be 0-3
    working days. No environmental benefits were considered likely by stakeholders.
    Most Authorities indicated that the policy option to add additional substances94
    to the list of
    new ODS in Annex II, so that they would need to be reported in the future, would not lead to
    increases in implementation and enforcement costs. Many Authorities referred to potential
    future positive environmental impacts, as this option would allow for informed decisions on
    these new chemicals. On the other hand, Businesses considered environmental impacts of
    these two substances as low, since they are Very Short-Lived Substances (VSLS). A Business
    estimated additional costs for a laboratory supplier needing to report on the production of a
    new ODS as 0.625 days per year.
    Improving coherence of the Regulation
    Respondents were asked about the objective that aims to improve internal coherence of the
    Ozone Regulation. The policy options aligned provisions with other policies, addressed
    inconsistencies within the Ozone Regulation and streamlined legal text of the legislation.
    For all stakeholders, aligning provisions with other EU policies were considered important.
    All stakeholders generally agreed that it is important to have a clearer and more accessible
    legal text of the Regulation. Policy options that improve the coherence of the ODS regulation
    are expected by most Authorities and Citizens to reduce administrative costs, whereas most
    Businesses expect no change in administrative costs. A customs representative stated that the
    alignment of the ODS Regulation with customs regulation is a must and that having an
    alignment with F-Gas licensing would increase effectiveness of controls and level of
    compliance.
    94 E.g. Dichloromethane (DCM) and 2-bromotrifluoropropene (2-BTP).
    52
    Annex 3: Who is affected and how?
    1. PRACTICAL IMPLICATIONS OF THE INITIATIVE
    Due to the accomplished phase-out of most ODS, the number of stakeholders is now greatly
    reduced from the beginnings of this policy in the 1980s and 90s. It is now limited to a few
    entities in a number of discrete sectors. The five main business types that are affected by the
    initiative:
    1. (Large) industrial chemical producers as well as incineration companies;
    2. Importers and exporters of ODS;
    3. Halon equipment owners, e.g. in aviation and the military;
    4. Laboratories, either public or private, who use ODS as solvents for experimental use;
    5. Building owners, recycling and demolition companies.
    Given that the HCFC phase-out has now also been accomplished, a new Regulation will
    cover less entities than the current Regulation did from its outset. Many measures
    discussed set out small changes to an already well-established system of regulating ODS and
    therefore the corresponding changes to the costs (savings) are expected to be small. The
    main impact in terms of environmental benefits and abatement costs relates to
    insulation foams.
    Some of the efficiency measures (removal of obligatory laboratory registration and quota
    requirements) will reduce the number of companies directly affected further. Adding a few
    additional measures on monitoring will not add many new entities and the additional effort
    for the ones already affected is modest. The changes proposed to the ODS regulation do not
    signify a significant change in the way of working for most companies (but may provide a
    boost to the recycling sector). A number of policy options are aimed at reducing
    administrative burden (B1, B5, B6, streamlining of trade via trade licences, abolishing the
    ODS quota applications and delaying the halon cut-off date for aircraft compartments), but
    others may slightly increase the burden to achieve better oversight and control (options B2,
    B3, C1, C2, C4, C5 on additional monitoring and reporting).
    Overall, it is not expected that category 1 businesses would not experience a noticeable
    increase in administrative cost.
    For category 2, there are significant savings from B1 and B5, which should more than
    compensate costs linked to better controls (B2, B3).
    For category 3, A4 may result in some costs depending on the circumstances, while
    B6 should result in savings for aviation companies.
    For category 4 on laboratories, the suggested policy changes (B4, B5) in particular would
    represent a reduction in administrative burden.
    53
    For category 5, the policy option A1 (foams) would represent some compliance costs for the
    owners, though the extent depends on the national regulatory background (i.e. waste
    legislation), will be shared by a large number of building owners, over several decades, and is
    considered small compared to overall demolition, renovation or re-development costs.
    Moreover, these small increases are likely to affect business owners and citizens that own and
    develop real estate, i.e. that are relatively well off as opposed to vulnerable citizens.
    The burden for the authorities at European level (European Commission, EEA) will be
    significantly reduced, in line with a shift of focus from reducing gas uses further to
    ascertaining the general use prohibition for ODS and avoiding emissions from historic uses.
    Better controls will be possible at less resources due to fully exploiting the combination of
    EU-wide electronic systems consisting of the ODS Licensing System and the EU Single
    Window Environment for Customs.
    The burden for national authorities will remain low and is mostly related to limited annual
    reporting, border controls and inspections, the latter in synergy with other legislation such as
    the Industrial Emissions Directive.
    Citizens benefit from the health benefits of avoiding dangerous radiation from the ozone hole,
    as well as lessening the impacts of a changing climate by keeping highly warming gases out
    of the atmosphere.
    2. SUMMARY OF COSTS AND BENEFITS
    I. Overview of Benefits (total for all provisions) – Preferred Option
    Description Amount Comments
    Direct benefits
    Reduced ozone- and
    climate-relevant emissions
    Emission saving:
    32,000 tODP for 2021-2050
    179 million tCO2e for 2021-2050
    Almost exclusively from action on foams
    (option A1),
    in addition some contributions from better
    controls and monitoring (options B1, B2,
    B3, C1, C2, C4) and prohibiting halon
    destruction (A4)
    Administrative cost
    reductions for business
    Annual savings up to €216,000 For business, mostly from efficiency options
    Affects importers/exporters (B1, B5),
    laboratories and other entities doing analysis
    (B4), chemical industry (B1, B5) and
    aviation companies (B6)
    Administrative cost
    reductions for authorities
    Savings:
    694 person days/a up until 2024, 254 person
    days/a from 2024 onwards;
    Annual IT costs of €31,500
    EC: 574 person days/a until 2024, 254
    person days/a thereafter,
    plus annual IT costs of €31,500
    Member States: 120 person days until 2024
    Indirect benefits
    Job creation Up to 2400 FTEs Recycling, reclamation and incineration
    entities
    R&D Innovation on demolition and treatment processes
    for foams
    Knock-on effects on refrigerators recycling
    Recycling, reclamation and incineration
    entities
    54
    II. Overview of costs – Preferred option
    Citizens/Consumers Businesses Administrations
    One-off Recurrent One-off Recurrent One-off Recurrent
    Action A1
    Direct costs
    Compliance costs:
    Higher costs to
    building owners.
    Costs include:
    Recovery: ca. €
    1050-1200/t;
    incineration
    €2500-3500/t;
    Total costs: 1.98
    billion €
    distributed over a
    high number of
    owners;
    Abatement costs:
    €25,000–132,000 /
    tODP or
    5.1-18.4 tCO2e
    Compliance
    costs:
    Same as
    citizens if
    commercial
    building owner
    Indirect costs Enforcement
    costs for
    Member
    States;
    synergies with
    waste and
    circular
    economy
    policies
    Action A4
    Direct costs
    Compliance
    costs:
    Halon
    equipment
    owner (e.g.
    aviation
    company,
    military etc.)
    Costs may arise
    if transport,
    reclamation and
    sale is higher
    than destruction
    Administrative
    costs:
    Keeping of
    records for 5
    years
    Indirect costs Enforcement
    costs for
    Member States
    Action B1 Direct costs
    Indirect costs Changes to
    IT system
    for EC
    Action B2 Direct costs Administrative
    costs:
    Minimal higher
    55
    cost to
    importers
    Indirect costs Enforcement
    costs for
    Member States
    Action B3 Direct costs
    Indirect costs Administrative
    costs: Cost to
    acquire
    authorised
    trader status for
    importers
    Compliance
    costs: Less
    flexibility on
    logistics for
    importers
    Enforcement
    costs for
    Member States
    Action C1 Direct costs Administrative
    costs for
    reporting
    companies*:
    total €5,500 p/a
    Indirect costs
    Action C2 Direct costs Administrative
    costs for
    producers/
    destruction
    companies/
    feedstock users:
    total €20,000
    p/a
    Indirect costs
    Action C4 Direct costs Administrative
    costs for
    reporting
    companies*:
    total €13,000
    p/a
    Indirect costs
    Action C5 Direct costs Administrative
    costs for
    reporting
    companies*:
    €25,000 p/a
    Indirect costs
    * Reporting companies include ODS importers, exporters, producers, feedstock/process agent users and destruction companies
    56
    Annex 4: Analytical methods
    A. Data sources
    The input data for modelling future developments of the baseline and the policy options relies
    on recent data on relevant parameters at substance level for the years 2010-2019. It was
    developed using data from:
    • The European Environment Agency (EEA) annual report on ODS based on company
    reporting under this Regulation (production, import, exports feedstock uses and
    process agents uses);
    • Commission’s ODS Licencing/Registration System, for laboratory use and imports
    and exports;
    • Member States reporting Art. 26(1)(b) for critical use of halons (2015-2019);
    • Research on existing and future ODS emissions sources (Evaluation, Ramboll (2019);
    • Data on insulation foam banks from SKM Enviros (2012) and ICF (2018);
    • Stakeholder input collected through the consultation process.
    The Commission also collected data based on an online open public consultation, a
    consultation of targeted stakeholders by an external consultant and an open stakeholder
    conference, see the consultation synopsis report in Annex 2.
    B. General overview of modelling approach for baseline
    The modelling of impacts relies on understanding the historic trends across environmental,
    economic and social variables. This data is used to define a baseline scenario across relevant
    environmental, economic and, where relevant, other impacts.
    Figure A4.1 shows a schematic overview of the approach to the impact assessment.
    Environmental and economic impacts are the main relevant impact categories, with social
    impacts treated as a follow-on effect (“other impacts” in the figure) of any economic changes
    experienced by stakeholders.
    57
    Figure A4.1 Overview of the impact assessment model
    Historical data and relevant drivers define the future development of the relevant
    environmental variables that the Ozone Regulation is targeting. The basis for estimating
    future emissions is the estimated developments of production, trade, uses and stocks/banks of
    ODS, from which emissions can occur, in addition to the relevant emission factors. The
    environmental module includes the flows of raw material (production, use, export, import
    etc.) and the associated emissions, for both ODS (Annex I) and new (Annex II) substances.
    The economic module then takes into account these drivers and adds costs for the relevant
    stakeholders reflecting the Regulation, which are limited largely to administrative costs. The
    administrative costs are identified at the level of the relevant individual measures of the
    Regulation. Where possible, these administrative costs (such as the cost of licences) are
    projected into the future using known information about the policy they are supporting.
    Drivers from the environmental module are used to project administrative costs where there
    is no such information available, and where the assumption of constant costs into the future is
    not considered reasonable.
    C. Development of relevant parameters for the baseline
    The production, use of, and storage of ODS releases emissions into the atmosphere, which
    can cause harmful effects due to their ozone depleting potential (ODP) and greenhouse
    warming potential (GWP). As a result, the environmental impacts associated with the
    emissions of ODS are twofold:
    1. Destruction of ozone according to the ODP of a substance, which ranges from 0.005
    to 10 for controlled substances, with a median of around 0.1.
    58
    2. Contributing to climate change due to some ODS also having high GWP and long
    atmospheric lifetimes.
    Both of these environmental impacts are within the remit of the Regulation, which states that
    action has to be taken to reduce emissions of the emitted gases “to protect human health and
    the environment against adverse effects resulting from such emissions and to avoid risking
    further delay in the recovery of the ozone layer.”
    The data on relevant parameters from recent years is used to derive the relationships between
    ODS uses/banks and emissions and the underlying drivers. The following parameters are
    considered:
     ODS production, imports, exports, and uses, distinguishing between uses for
    feedstock, process agents, laboratories, foam banks and critical halons applications.
    The data is summarised in Table A5.1 below, which gives the flow of these
    parameters as a time series.
     Emission rates include emissions from production and use of ODS, distinguishing
    between emissions associated to the use for feedstock, process agent, laboratory use,
    foam banks and halon banks. Recent emission trends are shown in Table A5.2 below.
    Recent trends in the background data over the 2010 to 2019 period are used to make a
    prediction, in combination with expert judgement about what is likely to happen with the
    sector going forward, to produce the baseline up until 2050 for each ODS emissions source.
    The discussion below illustrates how this was done in detail. For emissions linked to uses of
    non-listed ODS and other uses of Annex II substances (e.g. solvent use), there is no reliant
    baseline information due to the lack of current systematic monitoring.
    Table A4.1 shows the recent trends observed for the relevant parameters.
    Table A4.1 Recent trends on flows of ODS (2010 to 2019 unless otherwise specified)
    Flow/
    Stock
    ODS source 2010 – 2019 trends (annual or stock tODP)
    Data
    source
    2010 Trendline 2019
    Raw
    material
    (annual
    flow)
    Production 48,100 59,517 EEA
    Imports (2015 –
    2019)
    2,420 3,900 EEA
    Exports (2015 –
    2019)
    3,609 15,723 EEA
    Use
    (annual
    flow)
    Feedstock 51,200 38,717 EEA
    Process agents 952 298 EEA
    Laboratory use 26 (2011)
    No intermediate years data
    available
    3
    (2017)
    Evaluation
    59
    Flow/
    Stock
    ODS source 2010 – 2019 trends (annual or stock tODP)
    Data
    source
    Banks
    (annual
    size of
    the
    stock)
    Foam Banks 2012 estimate at 570.000 tODP
    SKM
    Enviros
    (2012)95
    Critical halons
    installed capacity
    (2015 – 2019)
    645 (2015) 626
    Art.
    26(1)(b)
    reports
    Annex II
    substan
    ces
    Production 22,946 20,494 EEA
    Feedstock use 22,831 20,391 Evaluation
    In the EU, ODS are produced and imported for use by chemical industry (i.e. feedstock use,
    process agent sue), laboratory use, and for export outside the EU. Currently, only the
    chemical industry is using ODS in large quantities, mostly as feedstock.
    Production has increased significantly recently but this seems to be linked to a demand
    outside of the EU, as exports have similarly been rising strongly very recently. Production for
    the EU market, which is essentially for feedstock use, has been declining. Exports of ODS is
    sensitive to the global market, but feedstock use will continue worldwide in significant
    quantities. As a proxy, the global chemical industry scenario from the IEA (SDS, Sustainable
    Development Scenario) for global ammonia96 demand is used. It is expected however that
    many feedstock chemicals will also be produced in Southeast Asia in the future. With this in
    mind, exports are expected not to surpass the (high) 2019 figure and are kept constant. As a
    result, production of ODS (Annex I) expressed in tODP is expected to decrease over the 2020
    – 2050 period.
    For the use of ODS, between 2010 and 2019, and also for the more recent 2015-2019 period,
    there is a clear decrease in feedstock use (and process agent use), in terms of tODP. For
    feedstock use, the amount in metric tonnes has not decreased substantially, but the average
    ODP of the substances has. This reduction is due to a shift away from relatively high-ODP
    feedstocks (a sharp reduction of CTC use). For process agents the reduction from 2015 is
    28.5%, although it should be emphasised that a single company takes up more than half of all
    the use. As there are alternatives for the use of ODS as process agents, they are expected to
    be phased out naturally in the medium term for the few remaining old installation that still
    use such processes. For feedstock use of Annex II substances, the decrease can be attributed
    to a decrease in methyl chloride production.
    If chemical production in the EU continues to grow at the same rate (0.3% annual growth as
    shown by CEFIC indicator in the last 5 years), we should expect to see the historical trends in
    95 SKM Enviros (2012) , “Further Assessment of Policy Options for the Management and Destruction of
    Banks of ODS and F-gases in the EU”, European Commission Service Contract Number:
    070307/2010/576660/SER/CLIMA.C.2
    96
    Ammonia is liked to pesticides production, one of the main feedstock uses of ODS
    60
    ODS-related variables to continue. The downwards trends shown in the process agent (in
    tODP and metric tonnes) and feedstock use (in tODP only) data, however, show very rapid
    decreases recently. If they were projected linearly into the future, the feedstock use in tODP
    would reduce more rapidly than what can be reasonably expected from the chemical industry,
    given that the total use in metric tonnes did not decrease.
    The ODS Regulation does not restrict feedstock use, and there is no technological
    justification to assume the reduced 2019 emissions and feedstock use ODP is a reliable trend
    that will continue at the same pace in the long-term. There are indications of industry re-
    location to South East Asia, though this is difficult to forecast. To adjust our projection to
    these expectations and make sure our baseline scenario does not incorporate aggressive
    reductions, the reduction rate in tODP for feedstock is reduced to 33% of the 2010-2019
    trends. This allows for the movement of less high-ODP feedstocks to continue, but reflects
    that in metric tonnes, feedstock use stays relatively constant. This correction was also
    applied for process agents, but more aggressively at 50%, as these are used in a small
    number of old installations in the EU, for which phase out is expected to continue.
    ODS emissions are mainly occurring from three sources:
    1. End-of-life emissions from banks, most notably foam banks, which account for the
    vast majority of remaining emissions.
    2. Industrial processes whereby low amounts of emissions are released as part of ODS
    production, feedstock use, and process agent use
    3. The release of halons during critical use applications and banks.
    In table A4.2 the recent emission factors and trends for different emission sources are given.
    Table A4.2 2019 emissions of ODS and recent trends of emissions factors
    Flow ODS source
    2019
    Emissions
    (tODP)
    Emission factor trends for 2010 – 2019 (annual or stock tODP)
    Raw
    material
    Production of
    controlled
    substances
    (2010 –
    2019)
    10*
    No reliable data on trends available, as data is only
    reported voluntarily with varying sample size of < 10% of
    production. Based on the latter, emission rates declined
    from 0.12% in 2010
    0.02%
    (2019)
    Production of
    Annex II
    substances
    Not reported, estimated as 4 (2019) based on emission factors established for
    Annex I substances as above
    Use
    Feedstock –
    controlled
    substances97
    35 0.13% (2010)
    0.09%
    (2019)
    Feedstock –
    Annex II
    18
    Not reported, but assumed to be similar as the EF for feedstock use
    of Annex I substances
    Process
    agents
    4 11.78% (2010)
    1.29%
    (2019)
    Laboratory < 1 Not available
    97
    Reported data for feedstock emissions is self-reported by industry, and may be underestimated, as the
    emission factor of 0.09% is below the lower value of the expected range of feedstock emissions at 0.1 – 4%.
    61
    use
    Banks
    Foam Banks 6000** Data not available on a yearly basis
    Critical halon
    applications
    (2015– 2019)
    22.6 0.75% (2015)98 0.37%
    (2019)
    * Extrapolated value based on available data for 10% of the total production
    ** value from SKM (2012)
    In the chemical industry, there are several uses with non-zero emission factors that are
    expected to continue into the future, including emissions from production, feedstock use, and
    process agent use.
    Raw material: Production emissions. The annual production of ODS is published annually
    by the EEA, based on self-reported data from each company producing in the EU. This does
    not include emissions associated with production, not being part of the reporting
    requirements. Some reporting companies do provide data on measurements or estimations of
    emissions associated with their production amounts. There is considerable margin for error,
    due to the low sample size of companies. Of 27 companies producing controlled substances
    in 2019, only five reported emissions. The self-reported emissions from the five reporting
    companies cover about ~ 10% of all ODS production.
    To obtain an estimate for all emissions associated with production, the available emission
    measurements were upscaled to the total amount of ODS produced. Due to the small sample
    size, the sharp decrease in the production emission factor shown in Table A4.3 can likely be
    attributed to the decrease in emissions between 2015 and 2019 from one company, while the
    production stayed the same. Therefore, when forecasting, this drop in the emission factor is
    not taken into account and the average emission factor from production across 2010-2019 is
    used instead. For production, this partly reflects the reduced emission factor from 0.12% to
    0.02%, at an average 0.054%. In the absence of any data, the same emission factor was used
    for production of Annex II substances.
    Feedstock use emissions. ODS can escape during chemical production processes, even if
    they are intended to be fully consumed or transformed during the process. The average
    emission factor for feedstock emissions between 2010 and 2019 is moving from 0.13 to
    0.09% of the total feedstock that is used, which is on the low end of the expected emission
    factor at 0.1 – 4% globally 99
    . This emission factor is expected to go down further to 0.08% in
    the future, but is not expected to reduce further as the maximum reasonable emission
    reduction ceiling will be reached.
    In Europe, remaining ODS uses for industry happens in very controlled environments in a
    small number of companies, and therefore lower than average emission factors are expected,
    but there is still the possibility that emissions are underestimated. Comparison of some data
    with E-PRTR in the past has shown some inconsistencies, i.e. that emission levels may be
    98
    The emission factor of the total bank each year (emissions / (total installed + stock) is on average 0.5% over
    the 2015 – 2019 period.
    99 Sherry et al. (2018), Current sources of carbon tetrachloride (CCl4) in our atmosphere
    62
    higher. For emissions from production there is no reporting requirement, and emissions
    estimates and their trends are based on only 10% of production.
    Emissions from feedstock use are therefore largely dependent on the total amount of ODS
    used for feedstocks. The same assumptions was made for the use of Annex II gases as
    feedstock.
    Process agent use emissions. ODS used as process agents may escape during the production
    process. In contrast to feedstock uses, ODS that are used as process agents are not chemically
    transformed as part of the process, which is why relative emissions rates are higher than
    during feedstock uses. Based on the historical data reported, the emission factor is relatively
    constant at around 1.2% of total ODS used as a process agent in the period 2016-2019.
    However, only six companies carrying out such processes have remained active in the EU.
    These total emissions from process agents are dominated by activities from one of these six
    companies, who is responsible for more than 75% of emissions. The most recent emission
    factor (2019) of 1.3% is taken forward into the baseline. In the medium to long-term the use
    of process agents will be discontinued due to modernisation of plants which will significantly
    reduce emissions further.
    Laboratory use emissions. No primary data on emission factors for laboratory use is
    available at this stage. Therefore, we have taken forward the estimate from the Evaluation at
    < 1 tODP per year as the baseline. We assume that the ODS emissions from laboratory uses
    will not change in the baseline, as up until 2050, there are no economic, technological, or
    policy reasons identified that would lead to a significant increase or decrease in laboratory
    activity associated to ODS use. This is because there is very limited scope for any further
    reductions and these activities involving ODS are expected to continue in similar extent into
    the future, and may be less sensitive to economic growth as the industrial uses above.
    Moreover, the emissions associated to laboratory use represents less than 0.1% of total
    emission associated to ODS.
    Foam bank emissions. Emissions from foam banks are the largest category, with an
    estimated 6,000 tODP of emissions in 2019, from a total bank of around 570,000 tODP
    estimated to exist in 2010. Furthermore, it was estimated that between 2015 and 2030, an
    average of ~ 13,000 tODP is added to this bank due to legacy materials reaching end-of-life.
    Due to this continuous input of material with ODS inside, the bank itself is not expected to
    reduce in size until after 2030, and annual emissions are also maintained and peak only after
    2030.
    This emissions source is significantly larger than emissions from any other use. As per
    analysis by SKM in 2012100
    , the annual emissions estimated from foam banks are primarily
    emissions from decommissioning and demolition of buildings. They constitute about 1.2% of
    the bank each year. It is recognised to be difficult to efficiently recover/destroy the blowing
    100 SKM Enviros (2012) , “Further Assessment of Policy Options for the Management and Destruction of
    Banks of ODS and F-Gases in the EU”
    63
    agent after it has been integrated into a foam product, which means that this emission factor
    of 1.2% of the bank per year is not expected to change in the baseline.
    Further research has been done to reduce the margin of error on the estimation of annual
    emissions from foam banks. If assuming that foam products have lifetimes of around 50 years
    before they are decommissioned (recycled), the implied foam bank emission rate from this
    would be about 2%. The actual emission rate of 1.2% is lower than the implied emission rate.
    This can be explained by the fact that not all foam products are being decommissioned and a
    significant part ends up stored in landfills. There is therefore an unknown share of the
    570.000t ODP bank stored in landfills currently, which might lead to further fugitive
    emissions above the current estimate of 1.2% per year.
    Some countries have done some research at a national level with respect to the remaining
    emission sources of ODS, based on observational data of concentrations present in the local
    atmosphere. There is also academic research with observational data that focuses on Europe
    as a whole. For example, the United Kingdom Met Office estimated about 400 tODP of
    unreported emissions101
    , which has not been part of the annual inventory reported to the EEA.
    These estimations are in a similar order of magnitude, extrapolating the emissions from one
    country to 27, with the expectation that there is between 6,000 and 7,000 tODP of emission
    from banks from the EU as a whole.
    Banks of critical use halon emissions. Emissions from critical uses of halons are reported
    under Article 26(1)(b) and are provided in the form of annual Member State reports. This
    data is used in conjunction with information on the total available stock and the specific
    prohibition dates for critical uses from the Evaluation. Article 26(1)(b) reports specify total
    emissions and total use, from which emission factors are determined.
    For banks of critical use halons, for which production is prohibited, the potential can be
    estimated by assessing the future end-dates by which these use cases will be fully prohibited
    under the current policy regime, combined with an emission factor for the remaining critical
    uses. These end-dates are based on data collected during the Evaluation, and result in a
    gradual reduction of the halon bank to zero from 2040 onwards. There is a possibility that by
    the end dates, no alternatives are identified for remaining uses and therefore use will continue
    after 2040. This could apply to up to ~30% of the halon bank. Emission rates have been
    going down in recent years and stand at 24 tODP or almost 14,700 tCO2e in 2019. The
    average emission rate from the total halon bank over the period 2015-2019 has been 0.5 %.
    Two other remaining emissions sources of ODS that were considered in the Evaluation are
    solvent use and emissions from cooling equipment, e.g. refrigerators and air conditioners.
    These have not been considered in this impact assessment, as they are not relevant anymore.
    Solvent use has been prohibited since 2008 for all purposes. For RAC, emissions from banks
    of in-use or end-of-life RAC equipment are not considered significant in the EU anymore,
    given the large amount of time that has passed since the phasing out of this ODS use, so the
    101 UK Met Office (2018), Long-term atmospheric measurement and interpretation of radiatively active trace
    gases
    64
    remaining estimated emissions bank remaining in 2020 is near zero102
    . Evidence exists from
    Poland that there is a remaining bank of ~83 tons of CFCs and HCFCs in containers holding
    3 kg ODS or more. Even when extrapolating this value to other Member States, this is a very
    small quantity compared to the estimated bank of ODS in foams at 570.000 tODP. There is a
    contribution from old equipment in landfills to emissions.
    Based on the considerations above the drivers and assumptions made to construct the baseline
    scenario are summarised in Table A4.3.
    Table A4.3 Overview of drivers and assumptions for the baseline scenario of relevant parameters
    ODS emissions
    source
    Stock or
    emissions
    (tODP and
    tCO2e)
    Driver for 2020 – 2050 trend
    Production
    Controlled
    substances
    (tODP stock)
    Production reduces in line with use of controlled substances as feedstock (see below
    under Feedstock), to account for the expectation that most EU production will be for
    EU industry, and that exports is not used by industry to make up some of the
    difference of reduced demand.
    Emissions
    (tODP)
    Emissions are reduced in line with production
    Emissions
    (tCO2e)
    Emissions are reduced in line with production. See Feedstock use for calculation
    details of converting from tODP to GHG. No expected significant change in emission
    factor (EF) for production.
    Annex II
    substances
    (tODP stock)
    Assumed to stay constant for use and emissions, as less regulatory pressure, but
    also no indication for significant growth from historic data (production stayed
    relatively constant across 2010 – 2019).
    As there is not enough primary data to uncover a meaningful trend in emissions data,
    this is also assumed to stay constant and is not reduced.
    Emissions
    (tODP)
    Emissions
    (tCO2e)
    Feedstock use
    Controlled
    substances
    (tODP stock)
    Taking the 2013 – 2019 trend. 2010-2012 is excluded as there were very high
    feedstock quantities used which may have been affected by the economic recovery
    after the 2009 crisis. Using the 2013 to 2019 reduction results in an annual reduction
    of 3.53%. This reduction (in tODP) was considered as unrealistic to be sustained in
    the long run, so this reduction factor is divided by 3, assuming that intrinsic factors to
    the 2013 – 2019 period resulted in a faster reduction than is usual. Further, an
    overall chemical sector production increase of 0.3% per year is added to account for
    economic growth of the EU chemical sector in line with 2010 – 2019 trends103
    . Trend
    is applied to data reported for 2019 from EEA.
    Emissions
    (tODP)
    Method similar to tODP stock, starting with reported EEA data, but emissions reduce
    slightly faster than use, reflecting a reduction in emission factor between 2010 to
    2019 (from 0.013 to 0.09). As the maximum potential is almost reached, emission
    factor is considered to reduce only from 0.09 to 0.08 between 2020 and 2050.
    Emissions
    (tCO2e) Converted tODP to tCO2e using GWPs from the GHG protocol (citing IPCC AR5)104
    Annex II
    substances*
    (tODP stock)
    Assumed to stay constant, in line with reasoning and driver for production of Annex II
    emissions.
    Emissions
    (tODP)
    With use constant, emissions reduce only in line with the slowly reducing emission
    factor. This reduction in emission factor is assumed as equal to the reduction of the
    emission factor for controlled substances (which reduces from 0.09 to 0.08, or ~ 11%
    from 2020 to 2050).
    Emissions
    (tCO2e)
    Converted tODP to tCO2e using GWPs from the GHG protocol (citing IPCC AR5)
    102
    SKM (2012), Further Assessment of Policy Options for the Management and Destruction of Banks of ODS
    and F-Gases in the EU
    103 CEFIC (2020), CEFIC Economic Outlook 2021
    104
    GHG protocol (2016), Greenhouse Gas Potential Values (citing from IPCC AR5), available at: available at:
    https://www.ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-Values %28Feb 16
    2016%29_1.pdf
    65
    Controlled
    substance
    feedstocks with
    potential identified
    alternatives
    Stock
    Identified via the uses highlighted in the Evaluation, and the process-specific data
    from the EEA reporting.
    Emissions
    Emissions
    (tCO2e)
    Process agent use
    Stock
    Process agent use is expected to decline significantly.to 25% of 2019 levels in 2040
    as old installations are being eliminated.
    Emissions Emissions decline linearly in line with use.
    Emissions
    (tCO2e)
    Emissions decline linearly in line with use.
    Laboratory use
    Licences (#
    no annual
    licences)
    Use of the EC licence data to identify number of licences. The use of the Laboratory
    Registration System (LabODS) slowly increased and is expected to max out at 1200.
    Not expected to increase or decrease, as no clear link to 2010 – 2019 economic
    trends identified in the licence data.
    Emissions
    (tODP)105 Emissions assumed to be < 1 tODP per year and stay constant in line with licences.
    Foam banks
    Annual
    release (tODP
    stock)
    All data derived from the forecast model of SKM (2012) with no modifications.
    For ODS banks of foam, predictions on future emissions can be made through
    understanding the current size of the bank in combination with an assumption on how
    much of this is released into the atmosphere annually, which is set at 1.2% based on
    previous research (SKM Enviros, 2012).
    Large quantities of foams are reaching their end of life until 2030. Sustained high
    levels of emissions will occur until 2050 and beyond.
    Emissions
    (tODP)
    Emissions
    (tCO2e)
    Critical use halons
    Stock Identified from the Evaluation support study, Table 38 (Ramboll, 2019).
    Emissions
    (tODP)
    Using Article 26(1) reports, aggregated data for each Member State excluding the
    UK, for the 2015 to 2019 period. As the required critical halon stock reduces in line
    with the prohibition dates, emissions are also reducing to a similar degree.
    See also Annex 5
    Emissions
    (tCO2e)
    Converted tODP to tCO2e using GWPs from the GHG protocol (citing IPCC AR5)
    Imports Annual flow Imports and exports are aligned with the global IEA (2020) SDS (Sustainable
    Development Scenario) trend for Ammonia, as a proxy for the high-volume basic
    chemical production system that ODS are part of.
    Imports are relatively constant over the 2010 to 2019 period and therefore the
    average over the 2015 – 2019 period is used as a starting point for extrapolating with
    the IEA SDS.
    Exports are not constant, as in 2019 exports increased by 150%, largely in line with a
    sharp reduction of feedstock demand. Therefore, exports cannot be assumed to stay
    in line with the average of 2015 – 2019 average. Instead, data point for 2019 is used
    as a baseline which is extrapolated using the IEA SDS trend.
    Exports Annual flow
    D. Development of the environmental baseline
    To define a baseline scenario for ODS emissions, the relevant drivers which influence the
    remaining ODS emissions in the EU are projected into the future. Projections have been
    developed for 5-year steps from 2020 to 2050, for each relevant activity that is impacted by,
    driven by, or relevant to the Regulation.
    Table A4.4 Baseline results for flows of ODS linked to exempted uses and banks
    ODS emissions
    source
    Stock or
    emissions
    (tODP and
    2020 2025 2030 2035 2040 2045 2050
    105 Due to the heterogeneity of substances used for laboratories, the total GWP of these substances could not
    be estimated as no substance-level data is made available for any one year.
    66
    tCO2e)
    Production
    Annex I
    substances
    (tODP stock)
    52,285 51,930 50,210 48,576 47,022 45,541 44,130
    Emissions
    (tODP)
    10 10 9 9 9 9 8
    Emissions
    (tCO2e)
    59,706 59,301 57,336 55,471 53,969 52,005 50,394
    Annex II
    substances
    (tODP stock)
    22,115 22,115 22,115 22,115 22,115 22,115 22,115
    Emissions
    (tODP)
    4 4 4 4 4 4 4
    Emissions
    (tCO2e)
    2,400 2,400 2,400 2,400 2,400 2,400 2,400
    Feedstock use
    Controlled
    substances
    (tODP stock)
    38,377 36,721 35,136 33,620 32,169 30,781 29,453
    Emissions
    (tODP)
    34 32 30 28 27 25 24
    Emissions
    (tCO2e)
    203,000 200,268 195,190 190,240 185,416 180,714 176,131
    Annex II
    substances*
    (tODP stock)
    22,583 22,583 22,583 22,583 22,583 22,583 22,583
    Emissions
    (tODP)
    20 19 19 19 18 18 18
    Emissions
    (tCO2e)
    11,248 11,043 10,842 10,645 10,452 10,261 10,075
    Annex I
    feedstocks with
    potential identified
    alternatives106
    Stock 14,612 13,981 13,378 12,801 12,248 11,720 11,214
    Emissions 0.56 0.53 0.49 0.46 0.44 0.41 0.38
    Emissions
    (tCO2e)
    9,638.00 9,054.33 8,506.00 7,990.88 7,506.96 7,052.34 6,625.26
    Process agent use
    Stock 283 220 170 132 102 79 61
    Emissions 4 3 2 2 1 1 1
    Emissions
    (tCO2e)
    14,200 11,000 7,050 7,050 3,700 3,700 3,700
    Laboratory use
    Licences (#
    no annual
    licences)
    1,200 1,200 1,200 1,200 1,200 1,200 1,200
    Emissions
    (tODP)107 < 1 < 1 < 1 < 1 < 1 < 1 < 1
    Foam banks**
    Annual
    release (tODP
    stock)
    14,000 14,800 8,900 3,100
    Emissions
    (tODP)
    6,000 6,700 5,700 4,200
    Emissions
    (tCO2e)
    37 * 106
    42 * 106
    38 * 106
    27 * 106
    Critical use halons
    Stock 5,586 5,210 4,866 4,549 3,247 0 0
    Emissions
    (tODP)
    42.8 40.2 38.0 36.0 22.6 0 0
    Emissions
    (tCO2e)
    26,619 25,017 23,653 22,400 14,095 0 0
    Imports Annual flow 4,202 4,096 3,961 3,826 3,695 3,569 3,447
    106 In section 4.3.1.1, the substances identified by the Evaluation of the Regulation as having potential viable
    alternatives are discussed
    107 Due to the heterogeneity of substances used for laboratories, the total GWP of these substances could not
    be estimated as no substance-level data is made available for any one year.
    67
    Exports Annual flow 15,970 16,272 16,166 16,031 15,896 15,765 15,639
    *For Annex II substances, 99% of production is assumed to go to feedstock use. Imports of Annex II substances are unknown,
    so not included.
    ** For foam banks, data is from SKM Enviros (2012)
    E. Economic baseline drivers
    Economic impacts are the baseline costs for businesses and laboratories, Member States as
    well as costs for the European Commission, without any change to the legislation. These
    costs are split by actors and measures that pertain to monitoring, reporting, licencing, etc.
    Some of these costs depend on the outputs of the environmental drivers above, as they
    depend on ODS use and emission projections as drivers of costs. Many economic costs are
    related to administrative costs, which are taken from the evaluation and stakeholder feedback.
    It is recognised that there may be additional categories of costs that may be incurred by
    companies as a result of the policy options, such as operational costs for a small number of
    businesses due to possible requirement of halon substitutes, that includes airlines using
    halons for fire protection or costs of reconversion on feedstock alternatives. These costs are
    included in the subsequent analysis of the policies by looking at the relative change (as the
    added costs for the policy scenarios versus the baseline of not having such costs).
    The cost estimates are based on data provided in the Evaluation and the related external study
    by Ramboll (2019), which give data on the estimated number of days spent by authorities and
    the businesses across an 8-year period (2010-2017) on the various actions associated with the
    Regulation. Time series data was available for most cost categories, though for some
    categories related to the time investment from the European Commission, only one data point
    was available. However, for most time series across 2010 – 2017, costs did not change
    significantly, and the average has been used to forecast. The exception to this is costs of
    licencing to business, which decreased sharply in 2014 after the introduction of the current
    ODS Licensing system and the bulk licence for aviation companies, and stayed at this lower
    point for the following 4 years up until 2017. Therefore, for the costs of licencing, the
    average of the 2014 – 2017 has been used for forecasting.
    For cost categories for which only time investment was provided, the estimated number of
    days was then used to devise a monetary impact of these costs. The number of days spent per
    cost centre was assumed to be constant over the 8-year period, and for business stakeholders,
    1 hour of labour was estimated at €40 (consistently with the assumption made in the same
    study in case of businesses), and it was assumed that a person worked 7.5 hours per day. By
    combining these assumptions, the annual cost estimations were produced. In the baseline, this
    is done for all stakeholders to provide a full overview of all costs. However in the impact
    assessment of specific options, the costs for the EC are estimated in person-days in line with
    the Evaluation.
    The baseline scenario for the costs has been developed by extrapolating timelines of cost data
    based on key drivers out to 2050. The lack of data over time on some cost categories
    associated with the Regulation has meant that other, secondary variables have been necessary
    to assess how costs change over time. Each regulatory cost was assigned a ‘driver’ which it
    68
    was assumed to have a linear relationship with, for example, the ‘registration requirements
    for laboratories’ was assumed to be correlated with the use of ODS in laboratories. The
    selection of drivers is limited to the information available and thus are primarily an output of
    the environmental impact assessment module (with information projected up to 2050). Given
    this, the drivers used are intentionally broad and are intended to provide an indication to
    understand how the cost may vary rather than an exact projection of costs.
    Each of the cost components is assigned a specific driver, according to the underlying
    activities performed by businesses, Member State or EU authorities and how they are
    expected to respond to the expected trends in the baseline (or, how they are expected not to
    respond and could stay constant). For the analysis of the policy options, we have introduced
    additional cost variations, to reflect expected changes that these polices will likely introduce
    to the costs.
    The assessment of the environmental and economic impacts in the respective modules is then
    used to assess the remaining impacts (i.e. impacts on employment are derived from the
    economic impacts). These impacts are not assessed quantitatively, due to the small expected
    magnitude and lack of quantitative data to underpin any significant changes. Where the
    remaining impacts cannot be directly linked to the environmental or economic ones, the
    impacts have been assessed qualitatively.
    Table A4.5 and A4.6 describe how for each driver used in the economic baseline, the source
    data and how this was projected up until 2050.
    Table A4.5 Description of baseline cost drivers for Business
    Description of cost Description of driver methodology used to forecast from 2020 to 2050
    Licensing
    requirements
    Licencing requirements are driven by predicted imports and exports over the 2020 to 2050
    period. Imports and exports increase in the first 5 years, then very slowly decrease), in line
    with the proxy global chemical industry scenario from the IEA (SDS, Sustainable
    Development Scenario) for global ammonia demand.
    Quotas
    Quotas are expected to go down by up to 16%, reflecting the trend of market concentration of
    actors in the chemical industry, so less entities are likely to interact with the quotas over time.
    Registration
    requirements for
    laboratories
    Data from the Evaluation is used from Table III.6 in the Evaluation, only the last 4 years as
    costs went down significantly in 2014. Registration requirements are expected to remain
    constant, as there is no historic time series available to verify its link to any other driver.
    Reporting
    requirements
    Reporting requirements are expected to go down in line with an expected concentration of
    the market, as global economic trends favour market concentration with a reducing number
    of market players across the chemical industry. Costs baseline is from Table III.6 in the
    evaluation.
    Table A4.6 Description of baseline cost drivers for Member State authorities and the European
    Commission/EEA
    Description of cost Description of driver methodology used to forecast from 2020 to 2050
    Member State Authorities
    Reporting
    Totals are taken from Evaluation table III.8, average across 8 years. We then multiply by 27
    and divide by 28 to 'take away' the UK part. This is expected to remain constant in the future
    69
    Description of cost Description of driver methodology used to forecast from 2020 to 2050
    Other costs,
    including
    inspections,
    customs, and
    promotion of
    recycling
    Using Evaluation Table III.7, it can be assumed that > 80% of movements came from the
    countries who provided data here. The NL figure from Table III.7 is likely repeated and it is
    unlikely the time would be spend double for "checking imports and exports" and "conducting
    inspections", so therefore this has only been counted once. This total is then upgraded to
    100% and divided by 8.
    Admin costs to the European Commission
    Licencing
    requirements
    Baseline data from Evaluation, in line with the trend for licences for businesses, costs for
    processing of licences are expected to decrease in line with Annex I import and exports. The
    trend driver is the same as used for business.
    Quota allocation
    Baseline data from Evaluation. Drivers are Annex I imports and production. In line with the
    cost trend for businesses.
    Registration
    requirements for
    laboratories
    (LabODS
    registry)
    Baseline data from the Evaluation, expected to stay constant in line with the trend for
    businesses.
    Registration for
    ODS companies
    and customs
    (ODS licencing
    system)108
    Baseline data from the Evaluation, expected to go down as import and export movements
    slightly decrease every year up until 2050. The trend driver is the same as used for
    business.
    IT system (cross-
    cutting: licencing,
    registration for
    labs)
    Baseline data from the Evaluation, IT system costs are increased by 50% between 2020 and
    2030, in line with IT cost development in the EC. A large cost driver are concerns on data
    security and (personal) data protection. This is not expected to increase further after 2030.
    Reporting
    requirements
    Baseline data from the Evaluation, and use a combined driver that includes the combined
    average of all imports, exports, production, feedstock and process agent reports.
    Phase-out
    schedules109
    Costs move in line with the phase out schedule for critical use halons, which is defined by
    use case and quantity in the evaluation up until 2040. No more costs after 2040 as all phase
    out schedules have passed.
    Illegal trade &
    customs
    Baseline data from the Evaluation, where the trend is defined by import + export
    movements.
    Technical
    requirements for
    destructions
    Data from Evaluation, expected to stay constant with no evidence to the contrary.
    Technical
    requirements for
    labelling
    Data from Evaluation, expected to stay constant with no evidence to the contrary.
    Technical
    requirements for
    leakage, emission
    control and
    related Member
    State
    implementation
    measures
    Data from Evaluation, expected to stay constant with no evidence to the contrary.
    Derogation
    decisions
    Data from Evaluation, projected using knowledge of prohibition dates for remaining uses
    subject to derogations or future derogations
    108 Costs for the ODS licencing system does not assume adoption of the Single Window system, as the
    implementation of the policy option is linked to implementation of the Single Window environment.
    Therefore, for ease of calculation, the impacts of implementing the Single Window environment are included
    in the assessment of the policy option, and not in the baseline.
    109
    These costs are associated to critical use banks and evolve in line with the dynamics for these uses in the
    baseline scenario.
    70
    Description of cost Description of driver methodology used to forecast from 2020 to 2050
    General
    correspondence
    and advice
    Data from Evaluation, expected to remain constant.
    Ensuring data
    security and data
    protection
    Data from Evaluation, expected to remain constant.
    Outreach
    activities
    (meetings and
    brochures)
    Data from Evaluation, expected to remain constant.
    Assuring
    compliance in the
    Member States
    Data from Evaluation, expected to remain constant.
    Providing access
    to documents
    Data from Evaluation, expected to remain constant.
    IT implementation
    costs
    Data from Evaluation. The trend is expected to remain constant as this concerns overhead
    IT implementation costs. The expected increase in IT costs is already covered in the IT
    system data row.
    External support Data from Evaluation, expected to remain constant.
    Admin costs to EEA
    IEEA Admin costs
    Costs increase by 25% to account for expected cost increases in by 2030
    EEA Topic centre
    Constant
    EEA External IT
    support
    consultancy for
    ODS webform
    ODS development cost. As the webform now exists, expected to only need 50% of this for
    maintenance from 2025 onwards. Costs remain the same in 2020 due to data security and
    protection.
    EEA External IT
    consultancy for
    BDR system
    Constant
    Table A4.7 shows that total costs for businesses are expected to decline slightly in the
    baseline. Although the costs associated with registration requirements for laboratories are not
    expected to change, the rest of the costs are expected to be declining in line with the declining
    overall use of ODS. Two most important cost categories are licencing and reporting
    requirements. The baseline assumes that, with a decline in the use of ODS, less businesses
    will need to apply for licences and report. At the same time, those businesses that still do will
    spend less time on these activities due to lower ODS volumes (and lower number of
    substances) to licence and report.
    Many components of the costs are projected to decrease, following the trends on declining
    use of ODS in the EU (approximately by 5% every 5 years, following the trends described
    above), so the total costs are also expected to fall overall.
    Table A4.7 Baseline projected administrative costs to businesses associated with the ODS regulation,
    EUR 2020
    Description of cost 2020 2025 2030 2040 2050
    71
    Description of cost 2020 2025 2030 2040 2050
    Total Cost for
    businesses
    303,486 303,428 297,391 285,658 274,892
    Licensing
    requirements
    113,731 114,836 113,477 110,455 107,608
    Quotas 10,961 10,871 10,511 9,841 9,232
    Registration
    requirements for
    laboratories
    47,297 47,297 47,297 47,297 47,297
    Reporting
    requirements
    131,498 130,425 126,106 118,066 110,756
    Source: Derivation from Table III.6 in the ODS Evaluation
    Table A4.8 presents the estimated baseline administrative costs associated with ODS
    Regulation between 2020 and 2050 for Member State Authorities and the European
    Commission/EEA. These costs are presented in real terms of 2020 currency in EUR or in
    person-days. As described above, the costs are based on the recent cost data primarily
    sourced from the Evaluation. Most cost categories are expected to stay constant or decline
    slightly, due to declining use of ODS. There are, however, some cost categories that are
    expected to increase in the baseline scenario. For example, IT system costs are expected to go
    up, as the result of strengthening data and security requirements.
    72
    Table A4.8: Baseline projected administrative costs associated with ODS Regulation for Member State
    authorities, the European Commission, and the EEA, in EUR 2020 and days, depending on the cost category
    Description of cost 2020 2025 2030 2035 2040 2045 2050
    Total admin costs to Member State authorities
    Reporting (EUR) 38,133 38,133 38,133 38,133 38,133 38,133 38,133
    Other costs,
    including
    inspections,
    customs, and
    promotion of
    recycling (days)
    507 507 507 507 507 507 507
    Admin costs to the European Commission
    Total EC admin
    costs for
    categories
    expressed in
    person days
    788 827 825 817 803 768 762
    Licencing
    requirements
    (days)
    132
    133 132 130 128 127 125
    Quota allocation
    (days)
    60
    60 58 56 54 52 51
    Registration
    requirements for
    laboratories
    (LabODS
    registry) (days)
    73 73 73 73 73 73 73
    Registration for
    ODS companies
    and customs
    (ODS licencing
    system)110
    (days)
    63 63 63 62 61 60 59
    IT system
    (cross-cutting:
    licencing,
    registration for
    labs) (days)
    168 202 202 202 202 202 202
    Reporting
    requirements
    (days)
    52 51 50 49 47 46 45
    Phase-out
    schedules111
    (days)
    18 17 16 15 9 0 0
    Illegal trade &
    customs (days)
    84 85 84 83 82 81 80
    Technical
    requirements for
    destructions
    (days)
    5 5 5 5 5 5 5
    Technical
    requirements for
    5 5 5 5 5 5 5
    110 Costs for the ODS licencing system does not assume adoption of the Single Window system, as the
    implementation of the policy option is linked to implementation of the Single Window environment.
    Therefore, for ease of calculation, the impacts of implementing the Single Window environment are included
    in the assessment of the policy option, and not in the baseline.
    111
    These costs are associated to critical use banks and evolve in line with the dynamics for these uses in the
    baseline scenario.
    73
    Description of cost 2020 2025 2030 2035 2040 2045 2050
    labelling (days)
    Technical
    requirements for
    leakage,
    emission control
    and related
    Member State
    implementation
    measures (days)
    5 5 5 5 5 5 5
    Derogation
    decisions (days)
    40 40 40 40 40 20 20
    General
    correspondence
    and advice
    (days)
    24 24 24 24 24 24 24
    Ensuring data
    security and
    data protection
    (days)
    19 24 28 28 28 28 28
    Outreach
    activities
    (meetings and
    brochures)
    (days)
    11 11 11 11 11 11 11
    Assuring
    compliance in
    the Member
    States (days)
    15 15 15 15 15 15 15
    Providing
    access to
    documents
    (days)
    14 14 14 14 14 14 14
    Total EC admin
    costs for
    categories
    expressed in
    EUR
    213,950 258,375 302,800 302,800 302,800 302,800 302,800
    IT
    implementation
    costs (EUR)
    177,700 177,700 177,700 177,700 177,700 177,700 177,700
    External support
    (EUR)
    36,250 36,250 36,250 36,250 36,250 36,250 36,250
    Admin costs to EEA112159,163
    In house
    thematic project
    management (€)
    142 160 178 178 178 178 178
    Total EEA
    admin costs for
    categories
    expressed in
    EUR
    116,450 111,600 116,563 116,563 116,563 116,563 116,563
    European Topic
    Centre (EUR)
    39,700 44,663 49,625 49,625 49,625 49,625 49,625
    External IT
    consultancy
    support for ODS
    19,625 9,813 9,813 9,813 9,813 9,813 9,813
    112 Additional IT costs due to strengthening of data and security requirements are included under EC IT costs.
    These categories reflect maintenance costs.
    74
    Description of cost 2020 2025 2030 2035 2040 2045 2050
    webform (EUR)
    External IT
    consultancy
    support for BDR
    development
    and
    maintenance
    (EUR)
    57,125 57,125 57,125 57,125 57,125 57,125 57,125
    Source: Derivation from Tables III.7 - 13 in the ODS Evaluation
    75
    Annex 5: Detailed information on halon banks
    Halons, which have very high ODP and GWP values, are still used for fire protection in
    certain “critical” applications, e.g. on aircraft and military equipment.
    All ‘new equipment’ and existing equipment in use where retrofit was deemed possible113
    must already be halon free today. For other areas such ‘end-dates’ are still in the future; some
    extend even until 2040. This means halons will be still be in use for the next two decades and
    the quantities needed will depend on the quantities of concerned equipment. The use of
    halons could possibly be avoided in two areas, where it is currently still allowed to use halons
    until 2035.114
    New production of halons is not allowed under the Protocol115
    . Halon users globally depend
    on existing stocks and halons reclaimed from old equipment. Current stocks of halons in the
    EU represent only 60% of the amounts installed (2019: see Table A5.1). The data presented
    excludes the UK, which increased the storage of halons significantly (from 90 to 160 mt
    between 2018 and 2019), likely as a response from UK-based halon users fearing trade
    limitations post-Brexit. In the period 2015-2019, 9% of the existing stocks in the EU-27 were
    used on average each year to fill equipment. Losses due to emissions, destruction and exports
    to third countries represent another 9% of quantities stored in the same period. Amounts
    destroyed in 2019 were significantly reduced from 2015 levels, but still represented roughly
    20% of the quantities needed to fill new equipment in 2019. The driver for destruction are
    high transport costs of the reclaimed material. While there are exports in similar amounts as
    those destroyed, there are hardly any imports of halons for critical use to compensate such
    losses. From 2015 to 2019, EU stocks (see quantities “stored”) have shown some variability,
    but have not declined (yet). If future demand for halons cannot be met (including at the
    global level), it will become unavoidable to restart new production.
    Table A5.1 Halon quantities installed, stored, used, emitted, destroyed and exported in/from the EU-27
    (excluding UK) in the years 2015 – 2019.
    Quantities
    (metric
    tonnes)
    2015 2016 2017 2018 2019 Average
    2019 -
    2015
    2015-2019 Trends
    Installed(i)
    596.4 861.0 763.2 765.0 719.1 740,9 +21%
    Stored(ii)
    412.9 450.0 385.5 424.9 434.8 421,6 +5%
    113
    At the moment of drafting the existing Regulation, i.e. 2008
    114
    These critical uses are for fixed fire protection systems of (i) engine compartments on military ground
    vehicles, and (ii) normally unoccupied engine spaces on military surface ships. Alternatives are also available
    for the inerting of fuel tanks on aircraft and in lavatory waste receptacles, but remaining quantities used are
    very low for the latter two uses.
    115
    Currently production of new halons is prohibited under the Protocol.
    76
    Quantities
    (metric
    tonnes)
    2015 2016 2017 2018 2019 Average
    2019 -
    2015
    2015-2019 Trends
    Used(iii)
    28.6 42.5 52.1 28.3 37.0
    37,6
    +29%
    Emissions(iv)
    4.9 7.2 6.0 5.4 3.4 5,4 -30%
    Emissions(v)
    (tODP)
    37.3 61.1 51.3 40.5 23.7 42.8 -37%
    Emissions
    (tCO2e)
    23,209 38, 197 31,804 25,195 14,688 26,619 -37%
    Destruction
    (vi) 37.9 31.8 4.5 3.0 7.5 16.9 -80%
    Exports 48.1 9.3 5.8 10.7 7.3 16.2 -85%
    Imports 0.3 0.0 0.0 0.0 1.6 0.4 *(vii)
    (i) Missing data: 2015 LV (ca. 1.2 metric tonnes based on following years), 2017 HR (ca. 6 metric tonnes based on
    previous and following year)
    (ii) Missing data: 2015 LV ca. 0t, 2017 HR ca. 0.15t,
    (iii) Missing data: 2015 LV ca. 0t, 2017 HR ca. 0.2t,
    (iv) Missing data: 2015 LV ca. 0t, 2017 HR ca. 0.001t,
    (v) Missing data: 2015 LV ca 0 tODP, 2017 HR ca 0.01 tODP
    (vi) Amounts destroyed are shown as reported under Article 27 of the Ozone Regulation. In order to reflect quantities
    destroyed that have been recovered from equipment located in the EU, amounts imported for destruction have been
    subtracted from the destruction figures.
    (vii) A trend statistic is not relevant here. Imports continue to be very low.
    Halon emissions are estimated to decline from ca 43 tODP (0.027 Mt CO2e) in the
    period 2015 to 2019 to 23 tODP (0.014 Mt CO2e) or lower116 in 2040 and no more
    emissions thereafter, as all equipment must be halon free by then. However, the existing
    stocks of halon may deplete due to emissions, destruction and export to third countries, in
    particular as production of new halons is not allowed at the global level. Recent assessments
    carried out by the Protocol’s Halons Technical Options Committee (HTOC) indicated that
    non-virgin halon stocks for critical uses might not be sufficient to meet the needs from 2030
    onwards at global level. New production, in particular at the global level, could lead to
    additional emissions of these substances with very high ODPs and GWPs. Emissions linked
    to critical uses where there are already alternatives available are estimated to be 6.9 tODP
    annually in the years preceding 2035, by when the current prohibitions becomes applicable.
    Fig. A5.2 shows the halon bank split depending on the potential availability of viable
    alternatives. Emissions are forecast up until 2040 using the average installed halons and
    associated emissions for the period 2015 - 2019. Emissions are expected to reduce as the
    bank size shrinks in line with different critical uses reaching their end date. The total average
    emissions reported in Article 26(1)(b) reports is 43 tODP, which is the average over the 2015
    – 2019 period. These emissions is forecast to go down in the baseline, as shown via the top
    line in the figure.
    116
    It is expected that not all equipment will be replaced at the last moment before the end date, i.e. emissions
    may reduce more quickly.
    77
    Figure A5.2 Remaining size of the active critical use halon bank in the baseline, split by availability of
    alternatives as identified by the Evaluation.
    78
    Annex 6: Detailed information on foams recovery
    A. Emissions from foam banks
    The main source of current and future emissions are ODS banks in particular from
    certain building materials containing foams blown with ODS. The estimated size of this bank
    in 2010 was 570,000 tODP, of which about 1.2% is emitted each year, which is ca. 6000
    tODP117
    or 37 Mt CO2e (Fig. A6.2), which amounts to more than 98% of all reported ODS
    emissions. Most emissions occur when buildings using such foams are renovated or
    demolished and the foams are crushed or shredded. In addition, significant emissions also
    occur thereafter, if relatively intact foams from construction waste are landfilled without
    treatment, as the remaining ODS gases will slowly leak out over time.118
    The Regulation
    requires recovery when it is technically and economically feasible. This is however open to
    interpretation and results in little recovery activity in most Member States.
    Large quantities of ODS foams will enter the waste stream each year until 2050, with an
    expected peak not before 2030 (Fig. A6.1).
    Figure A6.1 Estimated annual flow of ODP trapped in legacy materials (“banks”) that is reaching end-of-life
    each year (in tODP).
    Source: Ricardo using findings from (SKM Enviros, 2012)119
    Very significant amounts of emissions, in particular in climate terms, are expected to
    continue from the lack of recovery of ODS from foams during the refurbishment and
    117
    tODP: tonnes ODP
    118
    Old cooling equipment such as refrigerators with ODS are practically not in use anymore. However, those
    already present in landfills and where the ODS was not removed and destroyed, also contribute to these
    emissions.
    119
    SKM Enviros (2012). Further Assessment of Policy Options for the Management and Destruction of Banks of
    ODS and F-Gases in the EU. https://ec.europa.eu/clima/sites/default/files/ozone/docs/ods_f-
    gas_destruction_report_2012_en.pdf
    79
    demolition of buildings. Annual emissions will increase until 2030-35 to almost 6700 tODP
    or 42 million tCO2e, about half of the total amounts entering the wastes stream each year120
    .
    After 2035 this trend will reverse, but the potential emissions still remain at ca. 4000 tones
    tODP or 23 million tCO2e even in 2050 (Fig. A6.2). This is due to the significant
    contribution of long-term leakage from landfilled ODS foams in the latter years, even though
    the amount of ODS foams entering the waste stream will already be significantly reduced in
    2050 (see Figure y). The main sources of ODS emissions from insulation foams are metal-
    faced panels and laminated boards, with smaller contributions from block foam and spray
    foam. Many categories of insulation foam remain mostly an uncollected waste stream that
    goes to landfill.
    Figure A6.2. Expected EU annual emissions from foam banks
    B. Distribution of ODS foam banks for EU Member States
    The use of ODS foams in the past was not equally, i.e. based on population, distributed
    between Member States. By way of example, Eastern European countries have a lower share
    of the ODS-foam bank, as ODS foams were not used nearly as widespread as in other parts of
    Europe. The majority of CFC production was present in Northwest Europe plus France, Spain
    and Italy. In the period 1960 – 2000, adding insulation to buildings was also more prevalent
    and widespread in Northern Europe. For buildings, the use of ODS in the EU ended in 2003
    for all foam applications. CFC use ended by end 1994 in the EU-15 and ended few years later
    in Eastern countries. In general, the demolition waste from the building sector can be
    assumed to contain CFC-11/12 or HCFC 141b/142b, which were popular blowing agents for
    polyurethane (PU) and extruded polystyrene (XPS) foams used.
    This likely distribution of foam banks across the Member States is shown in Figure A6.3. The
    figure does not represent the ODS-containing foam bank itself, but rather it shows the
    countries with the most likely largest contribution, based on 2008 use patterns of foams that
    120
    Most of the remainder will be a source of long-term emissions from landfills.
    80
    would have contained ODS in the past. In the figure, the blue bars (% of ODS by bottom-up)
    are assumed to be more accurate, as this data is less based on economic assumptions and
    more on real-world data on insulation foam sales. The figure shows that Germany, France
    and the UK are likely to have the largest individual contribution to the European ODS foam
    bank, but Spain and Italy also have relatively high consumption.
    Figure A6.3. Estimated ODS bank distribution for EU-28
    C. Policies regarding Construction and Demolition Wastes (CDW) in Member States
    About 375 million tonnes of construction and demolition waste (CDW) were generated in
    2016 making it is the largest waste stream in the EU by weight (Eurostat, 2019). CDW is
    defined as a priority area in the EU according to the Circular Economy Action Plan, while the
    revised Waste Framework Directive (WFD 2008/98/EC, amended 2018/851) sets a
    mandatory target for its recovery of 70% by 2020. Despite a high average recovery rate,
    CDW is often down-cycled. Waste management options are ranked in the EU’s waste
    hierarchy. The highest priority is on waste prevention, followed by recycling, energy
    recovery and finally disposal, e.g. by landfilling.
    Despite its potential, the level of recycling and material recovery of construction and
    demolition waste varies greatly across the EU, ranging from less than 10% to over 90%. EU
    countries apply different definitions of construction and demolition waste, which makes
    cross-country comparisons difficult. The EU main objectives for this waste stream include to
    ensure that CDW is managed in an environmentally sound way. According to the
    requirements set under the Waste Framework Directive, the following objectives exist for
    CDW:
    81
     Promote selective demolition to enable removal and safe handling of hazardous
    substances and facilitate re-use and high-quality recycling by selective removal of
    materials and establishing sorting systems, and
     Increase the preparing for re-use, recycling and other material recovery (including
    backfilling) of non-hazardous construction and demolition waste to a minimum of 70 %
    by weight by 2020.
    A separation of ODS foam banks will be less costly in cases that legislation on separation of
    waste (for other materials) already pre-exists. In a recent study (2018) carried out for the
    European Commission, existing CDW policies were examined in a number of representative
    Member States: Netherlands, Denmark, Germany, Belgium, France, Italy, Poland, Czech
    Republic, Portugal, Romania and Malta.121 While all of these countries have transposed the
    EU waste acquis into national legislation, CDW management is regulated to a different extent
    across the Member States. Except for Romania and Malta, all the other analysed Member
    States have regulations specifically targeting CDW. Thereby, the most developed regulations
    can be found in the Netherlands, Denmark, Germany, Belgium, France and Italy. These
    countries include also most of the ODS foam banks as shown in Figure A6.3. The legislative
    framework of these leading countries is characterised by a variety of legislation specifically
    targeting CDW management combined with other tools promoting recycling of CDW. The
    most advanced legislations targeting CDW management comprise for example specifications
    on separation and requirements regarding the pre-treatment of CDW, mandatory pre-audits
    on demolition sites, mandatory departmental CDW management plans, as well as quota of
    percentage for recycled materials (including construction materials) and products in public
    procurement and new plants for sorting of waste materials were opened in the Netherlands.
    These plants recover materials such as wood, metals, plastics and inert materials. The study
    also mentions that many interviewees stressed the importance of a favourable and stable
    regulatory context for the economic viability of CDW recycling. The recycling of CDW
    would greatly benefit from a harmonized EU legislation that is appropriately enforced in all
    Member States. Today, each Member State has different set of regulations and in many cases,
    there are even large regional differences.
    D. Feasibility of ODS foam recovery and treatment
    It is more costly to separate, transport and destroy the ODS contained in the foam than
    standard disposal via landfilling without ODS recovery. There are a number of constraints
    that make effective recovery and treatment difficult and/or costly. These include:
    • Demolition companies may have difficulties to ascertain whether there is CFCs or not
    in a panel, and therefore judge how it should be handled (e.g., whether it can be
    121 IDEA et al. (2018) “Development and implementation of initiatives fostering investment and innovation in
    construction and demolition waste recycling infrastructure”
    https://ec.europa.eu/environment/document/download/099b6bff-d853-4061-a15c-58ade46cfe6b_en
    82
    crushed on-site or not). Building audits are expensive and take time, but are required
    to ascertain level of ODS present.
    • Transportation is expensive per tonne of material handled as ODS foams are
    considered hazardous materials.
    • Foam material with ODS cannot be crushed on site without emitting the ODS,
    increasing transportation cost for relatively light materials such as laminated boards
    panels.
    • Costs of waste segregation are high for some materials, especially if contaminated
    with bitumen. For laminated boards, segregation is required to avoid contamination by
    other substances or building materials
    • The recycling technology may require significant energy input.
    • For metal-faced panels, the capacity of nearby recycling facilities may be too limited
    to process all metal-faced panels
    • National capacity of waste recycling plants is not evenly distributed across Member
    States.
    • Lack of enforcement is a driver for demolition companies to avoid separation of CDW
    fractions and reduce costs.
    The technical and economic feasibility also strongly depends on the type of foam (e.g.
    panels, boards, spray or block), and where it is installed (see table A6.1).
    Table A6.1 Feasibility of building foams recovery by material
    Material Current feasibility Justification
    Metal-faced panels
    Medium-High
    Refurbished recycling facilities that have so far been treating
    old refrigeration equipment can treat metal-faced panels.
    According to experts interviewed122
    , it is economically and
    technically feasible to recover Metal-faced panels. The Metal
    component accounts for approx. 50-80% by weight (depending
    on panel thickness) and is easy to segregate and can be treated
    by existing refrigerant panel recycling plants. In this study, the
    recovery of the metal component of panels is assumed to
    already be economically viable, and only the foam component
    is analysed with respect to additional cost. At the moment,
    without a mandate for separation of panels and separate
    disposal of the metal and foam elements, there is low natural
    demand for the use of refrigerator panel recycling plants for
    this purpose.
    Laminated boards Medium-Low
    Laminated boards are more difficult and expensive to recover
    than metal-faced panels. However, built-up systems123
    could
    be feasible to recover since they are easy to segregate and
    collect, and they can be cut into smaller pieces to transport
    and process without losing much ODS content.
    122 Interview with UK-based recycling facility owning several refrigerant plants refurbished for metal-faced
    panels, and expert knowledge from authors of SKM (2012)
    123
    Type of laminated boards easily demountable system primarily used for roofing insulation.
    83
    Material Current feasibility Justification
    Boards in cavity structures124
    could also be feasible to
    recover. Costs in some Member States like Germany, the
    Netherlands or Austria, would be lower due to existing waste
    regulations in place and favourable building practices that
    reduce the contamination level of the materials. There is a
    knowledge gap on the feasibility of this beyond these
    countries.
    Floor insulation boards are not yet economically feasible to
    recover since they are contaminated with concrete, removal of
    which requires more innovation. In a board, CFC is under
    concrete, hence, it is highly contaminated and costly to collect
    and segregate.
    Spray foam
    Low
    According to the experts interviewed, spray foam recovery is
    not feasible in the demolition phase. ODS spray foam is
    mainly used in walls and roofs. It was often used on top of
    existing structures for e.g. roof insulation, sprayed against
    surfaces, pumped into cavity holes. When the walls are
    demolished, foams are trapped in the wreckage and it would
    require time- and cost-intensive manual segregation.
    Block foam
    Low For block foam, as part of concrete slabs, the recovery is not
    feasible in the demolition phase as no examples have been
    identified of successful splitting of this material from the
    generic demolition waste stream. For block foam part of pipe
    insulation, recovery opportunities may exist during pipe
    replacement activities. No evidence however was identified
    during this study on the recovery of pipe (block) foam in
    practice.
    In summary, it is appears feasible to recover about 100% of the waste stream of metal-faced
    panels. They are the cheapest option given their valuable metal component and because they
    can be cut into smaller pieces without emitting a significant amount of ODS being released.
    Thus they can be treated in existing facilities for domestic appliances. It is estimated that
    approximately 25% of built-up systems and cavity structures (the two sub-types of laminated
    boards) should also be feasible to recover given the evidence of suitable construction
    procedures. Floor insulation boards may still represent too many technical or economic
    challenges to be a candidate for mandatory recovery because they are trapped into the
    wreckage in the demolition process and, collection and segregation stage is labour intensive
    and costly. In floor insulation, CFC is under concrete, hence, it is highly contaminated and
    costly to collect and segregate. Spray foam is not efficient to recover as it is expected to lose
    124 Type of laminated boards that are introduced in empty cavities of existing panels mainly used for wall
    insulation
    84
    most of its ODS already in the use phase, making the cost-benefit ratio of mandatory
    recovery very inefficient.
    The industry is pro-actively exploring further options to divert end-of-life foam from landfill.
    Recycling and recovery solutions have been developed and have proven their technical
    feasibility. Raw material prices have been steadily increasing over the past years and are
    likely to continue this development. The cost for landfill is also going up. This will contribute
    to the economic viability of recycling and recovery options.
    E. Economic Impacts
    Economic impacts are assessed only for metal-faced panels, built-up system, and cavity
    structure laminated boards, as these are part of the policy option assessed. New evidence on
    the cost of recovery is based on data from two case studies and an expert interview from
    stakeholders engaging with waste streams in Netherlands, Germany, Austria and the United
    Kingdom. The final cost of the option per kg of ODS will be Member State specific, as
    building practices differ across the EU Member States. Therefore, these costs may be higher
    in other Member States than suggested for the Netherlands or Germany (where existing waste
    separation policy means that less additional cost is borne by the recycling plant or incinerator
    to obtain foam material, as it is already separated out and classified as a hazardous mono-
    fraction). Abatement costs in Table A6.2 are based on indicative prices from the two case
    studies, but are rather moderate in terms of CO2 given the high GWP of the ODS used in
    these foams. The total cost of around 1,978.5 billion € are borne by a high number of building
    owners and/or project developers.
    Table A6.2 Overview of the total costs of the policy scenario, with the materials targeted and the relevant 125
    Estimate of policy
    scenario abatement
    Total cost
    (NPV 2020
    – 2050)
    Abatem
    ent cost
    Unaddre
    ssed
    potential
    Estimate of
    untargeted emissions
    (2020 - 2050)
    Material
    Policy
    scenario
    target
    tODP
    GHG (kt
    CO2e) EUR
    EU
    R/
    tO
    DP
    EU
    R/
    t
    C
    O2
    e
    tODP
    GHG (kt
    CO2e)
    Metal-
    faced
    panels
    100%
    18,200
    88,050 447,054,292
    24,
    56
    3
    5.1 0% 0 0
    Built-up
    system
    s
    25%
    7,328
    42,650 639,445,333
    87,
    25
    9
    15.
    0
    75% 22,000 128,000
    Cavity
    structur
    e
    25%
    6,734
    48,363 891,752,000
    13
    2,4
    30
    18.
    44
    75% 20,200 145,000
    Floor
    insulati
    on
    0% 0 0 - 100% 19,800 151,000
    125 It is assumed that 10% content of blowing agent out of the total foam weight (German Federal
    Environmental Agency, 2012) excluding the metal cladding.
    85
    Spray
    foam
    0% 0 0 - 100% 5,300 25,500
    Block
    foam
    0% 0 0 - 100% 3,800 20,000
    Total 32,262 179,063 1,978,251,625 71,100 469,500
    Table A6.3 shows a comparison of abatement costs for metal-faced panels, built-up systems
    and cavity structures, and compares with the estimates made with the abatement costs in
    SKM (2012). SKM (2012) presented these costs only for GHG equivalent, and therefore this
    comparison is not made for tODP. Based on evidence from the stakeholder consultation, for
    those countries with an available waste stream, technical progress achieved over the last
    decade resulted in a significant likely decrease in recovery costs compared to the lower cost
    limit presented in SKM (2012). Note that this is known to be applicable in the Netherlands,
    Belgium, Austria and Germany, where the plants from the case studies source their material.
    Note that for metal-faced panels, it is assumed in this study that there exists a business case
    for the recovery of the metal, and therefore the calculated abatement cost is only for the
    additional cost to separate and recover the foam.
    Table A6.3 Blowing agent recovery cost assumptions (EUR / kt CO2e)
    Ricardo 2021 SKM 2012 Change (%)
    Low High Low High
    Metal-faced panels 5 25 120 -82% -97%
    Laminated boards
    Built-up
    systems 15 50 150 -70% -90%
    Cavity
    structure 18 50 150 -65% -88%
    To compensate for a lack of observed quantitative data on the costs across all Member States,
    the costs for the practice of asbestos panel recovery was examined as a proxy. Compared to
    the foam category of metal-faced panels, asbestos panels are somewhat similar in that they
    are still in use as covering in old buildings, and need specific recovery actions to protect the
    environment and human health as buildings are decommissioned. Further, asbestos panels
    cannot be shredded on site to save space in transport, similarly to what would be required of
    ODS-containing insulation panels. Asbestos recovery, because of its requirements for
    personal protective equipment, is of course expected to be significantly more expensive at the
    demolition stage than even the costliest example of foam panel recovery. Asbestos recovery
    cost should therefore represent a useful worst case upper limit of the segregation and
    transport costs panels with hazardous materials in different Member States.
    The asbestos panels can be given a ”shadow carbon price” by calculating what the carbon
    price of recovery would be, if the asbestos panels contained an amount of ODS similar to
    ODS-containing metal-faced panels (which is about 200 – 220 gram per m2
    panel126
    ,
    126 Estimate obtained from interview with Insus Recycling
    86
    equalling about ~ 1 ton of CO2e per m2
    , assuming a CFC-11/12 blown foam). The price data
    per m2
    panel is available for different Member States. While price ranges can vary by up to
    one magnitude within a country, they are rather similar across the different countries.
    Table A6.4 Example of asbestos removal costs (full process costs per m2
    panel) in different Member States.
    Member
    State
    Asbestos – proxy recovery
    costs (with landfill disposal
    destination)
    Shadow carbon price of asbestos
    panel recovery, if the panels
    contained 220 grams of CFC-11
    (GWP 4660), similar to metal-
    faced panels
    Netherlands
    Cost of removal (including
    landfill) 14 – 50 €/m2 € 51./m2
    Austria € 30/m2 € 31./m2
    France
    Cost of recovery: 25-150 €/m2
    Cost of landfill disposal: 300-
    500 €/ton
    € 25 – 153 /m2
    Per ton comparison on landfill not
    comparable due to weight differences
    between asbestos and metal-faced
    panels, and significant additional landfill
    requirements for asbestos
    Spain
    Cost of recovery: 100-150 €/m2
    Cost of landfill disposal: 160
    €/m3
    € 102 – 153 /m2
    Per m3
    comparison not comparable due
    to weight differences between asbestos
    and metal-faced panels, and significant
    additional landfill requirements for
    asbestos
    Bulgaria Cost of recovery 36 – 51 €/m2 € 37 – 52 /m2
    87
    The asbestos recovery costs can be seen as an upper limit to the costs of segregation
    and transport. Asbestos is generally assumed to be stored in landfill sites, and therefore
    do not have further significant costs after the material has been transported to the site. In
    the hypothetical scenario that segregating and transporting ODS insulation panels would
    cost just as much as segregating asbestos panels (real prices would be much less!), and
    the final destination requires incineration at the prices quoted by Austria, then these
    costs, based on the data obtained in this study, would be about € 75 + € 153 = € 228 per t
    CO2e.
    F. Social Impacts
    Research and development
    According to interviewed experts the recovery of foam banks can be expected to spur
    innovation since it will create an incentive to reduce costs of reclamation via research
    and development into demolition and recycling technologies. Based also on the
    experience related to the mandatory recovery from domestic appliances, such a policy is
    likely to result in better and cheaper ways to ensure recovery. Since 2002, the Ozone
    Regulation mandates the recovery and destruction of ODS contained in insulation foams
    within domestic refrigerators and freezers (SKM Enviros, 2012). Prior to the introduction
    of the requirement, there were no incentives to allocate resources to research recovery
    technologies and the recovery was expensive. However, in order to comply with the new
    requirement, companies invested in research and development to reduce costs and as a
    result, the recovery of domestic refrigerators and freezers which was already proven as
    technically feasible became much more economical.
    In sum, the effect of mandatory recovery of building foams on research and development
    is expected to be positive and significant for metal-faced faced panels and some types of
    laminated boards, for which technical feasibility has been already proven. Moreover,
    given that transport costs are high, research and development is likely to be carried out
    by domestic companies, creating added value within the European Union.
    Consumer prices
    The implementation of policy option A4 could potentially increase consumer prices, i.e.
    for owners renovating or constructing a building. If new construction in a building site
    must be preceded by incurring in the recovery of ODS from the decommissioned
    building, real estate prices could increase slightly as a result. However, there is evidence
    in the literature suggesting that construction prices have a low influence on the evolution
    of real estate prices (Martins et al., 2020).
    The higher demolition costs are expected to be borne by the building owners, as
    demolition companies would pass these on. The costs are therefore distributed over a
    large number of persons and the additional costs compared to the overall costs of
    demolishing or refurbishing the building would tend to be rather small.
    New buildings are more expensive on average, and hence mostly bought by households
    with high purchasing power or by companies as office space. Thus vulnerable consumers
    are less likely to be affected by such price increases. Moreover, richer households pay
    88
    high premiums (e.g. for “good neighbourhood”) hence the potential increase in consumer
    prices due to additional costs of recycling, even if realised, would be very marginal
    compared to the final housing price.
    In case of existing buildings, foam removal would in all likelihood only be linked to
    substantial overhaul or refurbishment activities. Conversely, necessary maintenance or
    emergency reparations would in almost all cases not include ODS foams removal. Thus
    consumers with little financial means would usually not have to worry about also paying
    the bill for foam replacement activities.
    Employment
    The policy option A4 may increase employment due to the labour-intensive and complex
    nature of the demolition and reclamation processes.
    Currently demolition, segregation and insulation foam recovery processes are largely
    mechanised and are not labour-intensive activities, although there are differences among
    Member States. According to the literature127 it is unlikely that recycling will add labour
    time (or cost). In fact, in many cases recycling would save time spent on waste
    management.
    Foam insulation recycling accounts for a small part of the activities and it is difficult to
    isolate the current number of associated recovery jobs in the EU. However, as an
    example, a representative company for recycling refrigeration equipment interviewed has
    a revenue-employee ratio of 1.8 employees per million € of revenues. This would suggest
    creation of approximately 215 FTEs in the EU for the medium effort scenario, and 2,377
    FTEs in the high effort scenario.
    127 Kameswari (2015). Construction and Demolition Waste Management - A Review. International Journal
    of Advanced Science and Technology, Vol 84.
    89
    Annex 7: List of clarifications needed in Regulation
    - Clarify definition of destruction in relation to feedstock.
    - Add definition of non-refillable container.
    - For non-refillable containers, in addition to placing on the market prohibit
    transport and possession, unless the containers are intended for laboratory and
    analytical use.
    - One incorrect reference has been identified in Article 15(2)(k) to Article 11(5)
    where it should be to Article 11(8).
    - Clarify the wording of Article 5(3) and make clear that both servicing of
    equipment with controlled substances and any other use of controlled
    substances, except for the uses exempted in other articles, are prohibited.
    - Clarify the links with additional airworthiness specifications: Refer to
    Regulation (EU) 2015/640128 (as amended by Implementing Regulation (EU)
    2019/133129), prohibitions to use halons in lavatories from 18 May 2019 and in
    handheld fire extinguishers from 18 February 2020 in all newly produced large
    aeroplanes and large helicopters (“forward fit dates”)
    - Reference to Directive 91/414/EEC should be replaced by reference to new
    Regulation (EC) No 1107/2009 and reference to Directive 98/8/EC should be
    replaced by reference to new Regulation (EU) No 528/2012
    - Replace references to Decision 1999/468/EC130
    with Regulation (EU) No
    182/2011131
    - Delete the reference to 15(2)(h) from Art. 17(2)(d), as imported ODS for
    destruction should not be allowed to be re-exported for destruction.
    - Adjust Article 23(1) so that it includes the specific terms of the obligation to
    limit ODS emissions, including during production, transport and storage and
    prohibits venting
    - Clarify (the obvious fact) that “products and equipment containing or relying
    on ozone depleting substances shall be decommissioned when they reach the
    end of their life”
    - Simplify the leakage rules taking into account the general servicing ban on
    equipment and the fact that little relevant equipment remains.
    - Delete obsolete provisions.
    128 Commission Regulation (EU) 2015/640 of 23 April 2015 on additional airworthiness specifications for a
    given type of operations and amending Regulation (EU) No 965/2012
    129
    Commission Implementing Regulation (EU) 2019/133 of 28 January 2019 amending Regulation (EU)
    2015/640 as regards the introduction of new additional airworthiness specifications
    130
    Council Decision 1999/468/EC of 28 June 1999 laying down the procedures for the exercise of
    implementing powers conferred on the Commission
    131
    Regulation (EU) No 182/2011 of the European Parliament and of the Council of 16 February 2011
    laying down the rules and general principles concerning mechanisms for control by Member States of the
    Commission’s exercise of implementing powers
    90
    Annex 8: Measures and Intervention logic of Regulation (EC) No 1005/2009
    Measure Relevant Articles of the Ozone Regulation
    General prohibitions to produce, place on the market or use ODS as bulk or in products or equipment
    Articles 4-6 prohibiting production, placing on the market and
    use of all ODS in Annex I (e.g. CFCs, HCFCs, halons, methyl
    bromide,..) including in products and equipment
    Exemptions from the general prohibition
    In relation to:
    Article 7: Feedstock uses
    Article 8: Process Agent uses
    Article 9: Destruction and Reclamation
    Article 10: Laboratory and analytical uses
    Article 12: Methyl bromide emergency use
    Article 13: Critical halon uses
    Prohibitions on trade (import export) unless related to exempted uses, as well as licensing
    requirements for trade
    Articles 15, 17 and 18
    Quota limitations related to the exempted uses Article 16
    Registration requirements for laboratory and analytical uses Article 10
    Technical requirements for labelling that are mirroring the exemptions Article 7, 8, 10, and 11
    Recovery and destruction Article 22, Annex VII
    Obligations to prevent leakage and emissions Article 23
    Obligations on Member States to conduct inspections and have penalties Article 28 and 29
    Reporting requirements for EU Member States and undertakings (including illegal trade) Article 26
    Company reporting on ODS Article 27
    91
    92
    Annex 9: List of discarded options
    A9.1 Discarded options regarding the exempted uses
     Impose strict maximum limit for use and placing on the market for feedstock
    uses. Such a general requirement, in the absence of viable alternatives, will result in
    a restriction of the production in the installations where such feedstock is used. This
    may result in relocation of the affected chemical production processes outside of the
    EU, with potentially very high economic impacts. This would not lead to any
    environmental gains, as emissions would result elsewhere and very likely under less
    strict controls. For the impact assessment, it was decided to investigate the option A2
    further, namely a list of only those processes where alternatives appear to be
    available.
     Introduce emissions controls on feedstocks (and process agents). This option was
    regarded as a possible duplication of emission control systems under the Industrial
    Emissions Directive (IED). Some provisions in the IED already apply to some ODS
    (Annex I) producers, users of ODS (Annex I) as feedstock and destruction
    companies. ODS are addressed in some BAT document, but a more general
    consideration there could be useful. The reduction of emissions of ODS (Annex I)
    from feedstock and process agent uses could therefore be regulated further under the
    IED as appropriate, rather than through new provisions introduced under the
    Regulation.
     Introduce a prohibition date for process agents. This option would likely have
    significant negative economic impacts for the few businesses concerned since it
    would directly restrict their highly specialised business activity and could lead to
    closure of plants. Considering the low quantities being used by EU undertakings and
    corresponding emissions (yearly emissions amount to circa 4-5 tODP), a complete
    ban of these processes appears not cost-effective.
     Impose a lower maximum limit for laboratory and analytical uses. This option
    would have technically constrained business activity due to the limited availability of
    alternatives, particularly the use as reference material.
     Require a permit for destruction of halons. This option would require destruction
    facilities to request a permit for destruction of halons including a proof that
    reclamation back to specification standards is not possible, e.g. due to technical
    issues based on the low purity of the product and excessive costs for multiple
    distillation processes. The destruction facility would have to check the purity of the
    halon in question first, and then either apply for permit (if certain criteria appear to
    be met) or return the halon back to the supplier. Further taking into the account the
    need to issue permits by competent authorities, this option was expected to entail
    excessive costs for the destruction facility and the authorities.
     Permit the use of mixtures containing HCFCs as an alternative to halons when
    non-ODS alternatives do not exist. Mixtures containing HCFCs could be suitable
    93
    alternatives to halons for firefighting, as both GWP and ODP are lower, but are
    currently not allowed under the Regulation. However, such an option would not be
    in line with the current requirements set by the Montreal Protocol, which allows
    servicing only (not first fill) for fire equipment already in use by 1 January 2020 (and
    only until 2030). Stakeholders indicated that the number of corresponding equipment
    falling into this category might be very low, if existent at all, which is why this
    option was discarded. Should these rules under the Protocol change in the future, a
    flexibility clause in the Regulation would help to capitalise on such developments
    (see option D3).
    A9.2 Discarded options related to emission prevention from equipment using ODS:
     Align qualification requirements for with the F-gas Regulation for personnel that
    is involved in handling refrigeration, air-conditioning and heat pump equipment,
    including at the end of useful life, i.e. leakage checking, recovery and
    decommissioning. However, such equipment still containing or relying on ODS
    (Annex I) after 2020 is very small. Furthermore such ODS equipment is very likely
    serviced and decommissioned by the same personnel as F-gas equipment, which
    would therefore already be sufficiently trained and certified. Close alignment would
    require relevant Commission Implementing Regulations related to the F-gas
    Regulation to be adjusted and, at Member State level, national vocational systems
    would need to be changed to reflect these changes. This appears disproportionate to
    the small remaining quantities.
     Move (some) substances from Annex II Part B to Part A. This options would
    mean prohibiting these new ODS except for the exempted uses. The largest
    quantities of these substances are used for feedstock, in which case the option would
    have no effect as feedstock uses are exempted. However, some of these substances
    such as methyl chloride appear to be used as solvents, for which the availability of
    technically and economically feasible alternatives is uncertain. Others are already
    banned for such use under REACH (n-propyl bromide). As there does not appear
    any immediate environmental gains from this option while there might be some
    complications, this option was not retained.
     Include ODS not yet covered under the Ozone Regulation directly in Annex II
    Part A, i.e. prohibiting them except for exempted uses. This was not retained as
    more information would need to be collected first on quantities, their uses and their
    relevance for the EU industry to justify such a requirement.
    A9.3 Discarded options related to achieving more efficiency
     Simplify the registration system for laboratories. This option introduces de
    minimis thresholds for registration to lower the number of affected low-scale users.
    However, if the coverage is incomplete and a diversion of ODS can thus not be
    excluded, there seems to be little advantage to the option of abolishing the
    registration altogether and achieve higher cost savings (option B4).
    94
     Introduce a de minimis for the annual quota allocation process that would still
    require annual quota allocation by large-scale importers, but would exempt
    transactions dealing with small amounts. Such a hybrid system would not achieve a
    lot of control or provide an incentive for using alternatives and is due to lower
    savings on balance not preferable to the complete abolishment of quotas (option B5).
     Add a requirement for customs to close licenses to ensure that the licenses of ODS
    shipments are checked. This was not retained as this option would add to the
    administrative burden for customs and it becomes obsolete as soon as the EU-Single
    Environment for Customs is operable and mandatory in all Member States.
     Add requirements for customs to liaise with competent authorities where
    appropriate. This was not retained as this option would add to the administrative
    burden for customs and it becomes obsolete as soon as the EU-Single Environment
    for Customs is operable (i.e. custom offices and competent authorities are connected
    to the ODS Licensing System) and mandatory in all Member States.
     Add additional labelling requirements. ODS have to be labelled under the CLP
    Regulation by indicating the name of substance and the hazard phrase that it is
    damaging the ozone layer. Noting that the EU Single Window Environment for
    Custom will include information on the substances of a licence, the requirement to
    introduce an additional labelling scheme appears to be not needed.
     Establish a barcode system for bulk gases to allow digitised tracking of shipments
    as a means of controlling illegal trade. As the implementation of such a system in all
    27 EU Member States would likely involve a high administrative burden and costs
    for customs and economic operators of the whole supply chain, this option was
    discarded.
    A9.4 Discarded options related to better monitoring
     Require emissions data collection from remaining ODS banks by Member
    States. The main remaining ODS equipment reaching its end of useful life today are
    foams used in construction of buildings in the past. Collecting data systematically is
    difficult and costly due to the disperse and widespread use of these foams. Sustained
    leakage is also expected from landfills, where a requirement to measure in a
    systematic fashion would similarly be disproportionate. One-off surveys are
    probably a more appropriate approach to gather such data and do not require a legal
    basis.
     Add minimum reporting limits for laboratory and analytical uses. This option
    was not retained as it would not be in line with reporting requirements of the
    Protocol.
     Require registration for ODS suppliers, users and destruction facilities as well
    as prohibiting the sale to a non-registered entity. This option would involve
    mandatory record keeping on names of purchaser, quantities supplied to the
    95
    purchaser and reason of the purchase. Given the likely additional administrative
    burden for companies, national authorities and the EC, this option was screened out.
     Add unsaturated hydrochlorofluorocarbons (HCFOs) for monitoring purposes.
    As some of these substances belonging to this group are already monitored under the
    F-gas Regulation, it seems more appropriate to consider the inclusion for monitoring
    of any other gas belonging to that group there.
     Add a criteria based on ODP for an automatic inclusion of substance for
    monitoring. This option would include all substances with a certain ODP
    automatically in Annex II Part B. Inclusion of some ODS that are not yet covered
    under the Ozone Regulation might require reporting by many undertakings that are
    not yet registered in the reporting system. Also, there are substances such as N2O,
    which have an ODP, but are used in completely different sectors alien to those the
    Ozone Regulation (e.g. agriculture and natural sources for N2O) and where the
    measures of the Regulation are ill suited to address these. An automatic inclusion
    would therefore have unwanted and unforeseen circumstances.
    96
    Annex 10: Visual aid showing the links between the problems
    identified, relevant drivers and individual measures to address
    the problems
    Policy Option 1
    Policy Option 2: also includes PO1
    measures
    Policy Option 3: also includes PO1 and
    PO2 measures
    n.b.: Measure A1 is more ambitious for PO2 and PO3,
    compared to PO1, as it also includes laminated boards